scholarly journals Cardiovascular magnetic resonance evaluation of aortic stenosis severity using single plane measurement of effective orifice area

2012 ◽  
Vol 14 (1) ◽  
pp. 23 ◽  
Author(s):  
Julio Garcia ◽  
Oscar R Marrufo ◽  
Alfredo O Rodriguez ◽  
Eric Larose ◽  
Philippe Pibarot ◽  
...  
2021 ◽  
Vol 8 ◽  
Author(s):  
Cesare Mantini ◽  
Mohammed Y. Khanji ◽  
Emilia D'Ugo ◽  
Marzia Olivieri ◽  
Cristiano Giovanni Caputi ◽  
...  

Objectives: Transthoracic echocardiography (TTE) is the standard technique for assessing aortic stenosis (AS), with effective orifice area (EOA) recommended for grading severity. EOA is operator-dependent, influenced by a number of pitfalls and requires multiple measurements introducing independent and random sources of error. We tested the diagnostic accuracy and precision of aliased orifice area planimetry (AOAcmr), a new, simple, non-invasive technique for grading of AS severity by low-VENC phase-contrast cardiovascular magnetic resonance (CMR) imaging.Methods: Twenty-two consecutive patients with mild, moderate, or severe AS and six age- and sex-matched healthy controls had TTE and CMR examinations on the same day. We performed analysis of agreement and correlation among (i) AOAcmr; (ii) geometric orifice area (GOAcmr) by direct CMR planimetry; (iii) EOAecho by TTE-continuity equation; and (iv) the “gold standard” multimodality EOA (EOAhybrid) obtained by substituting CMR LVOT area into Doppler continuity equation.Results: There was excellent pairwise positive linear correlation among AOAcmr, EOAhybrid, GOAcmr, and EOAecho (p < 0.001); AOAcmr had the highest correlation with EOAhybrid (R2 = 0.985, p < 0.001). There was good agreement between methods, with the lowest bias (0.019) for the comparison between AOAcmr and EOAhybrid. AOAcmr yielded excellent intra- and inter-rater reliability (intraclass correlation coefficient: 0.997 and 0.998, respectively).Conclusions: Aliased orifice area planimetry by 2D phase contrast imaging is a simple, reproducible, accurate “one-stop shop” CMR method for grading AS, potentially useful when echocardiographic severity assessment is inconclusive or discordant. Larger studies are warranted to confirm and validate these promising preliminary results.


2014 ◽  
Vol 32 (7) ◽  
pp. 891-898 ◽  
Author(s):  
Julio Garcia ◽  
Michael Markl ◽  
Susanne Schnell ◽  
Bradley Allen ◽  
Pegah Entezari ◽  
...  

2021 ◽  
Vol 23 (1) ◽  
Author(s):  
Haotian Gu ◽  
Rong Bing ◽  
Calvin Chin ◽  
Lingyun Fang ◽  
Audrey C. White ◽  
...  

Abstract Background First-phase ejection fraction (EF1; the ejection fraction measured during active systole up to the time of maximal aortic flow) measured by transthoracic echocardiography (TTE) is a powerful predictor of outcomes in patients with aortic stenosis. We aimed to assess whether cardiovascular magnetic resonance (CMR) might provide more precise measurements of EF1 than TTE and to examine the correlation of CMR EF1 with measures of fibrosis. Methods In 141 patients with at least mild aortic stenosis, we measured CMR EF1 from a short-axis 3D stack and compared its variability with TTE EF1, and its associations with myocardial fibrosis and clinical outcome (aortic valve replacement (AVR) or death). Results Intra- and inter-observer variation of CMR EF1 (standard deviations of differences within and between observers of 2.3% and 2.5% units respectively) was approximately 50% that of TTE EF1. CMR EF1 was strongly predictive of AVR or death. On multivariable Cox proportional hazards analysis, the hazard ratio for CMR EF1 was 0.93 (95% confidence interval 0.89–0.97, p = 0.001) per % change in EF1 and, apart from aortic valve gradient, CMR EF1 was the only imaging or biochemical measure independently predictive of outcome. Indexed extracellular volume was associated with AVR or death, but not after adjusting for EF1. Conclusions EF1 is a simple robust marker of early left ventricular impairment that can be precisely measured by CMR and predicts outcome in aortic stenosis. Its measurement by CMR is more reproducible than that by TTE and may facilitate left ventricular structure–function analysis.


2020 ◽  
Vol 24 (4) ◽  
pp. 74-80
Author(s):  
V. V. Bazylev ◽  
R. M. Babukov ◽  
F. L. Bartosh ◽  
A. V. Gorshkova

Purpose: comparison of hemodynamic parameters of transaortic blood flow in patients with aortic stenosis depending on the bivalve or tricuspid structure of the aortic valve.Materials and methods. A study of 180 patients with isolated aortic valve stenosis (AC) with two – and threeleaf structure was conducted. Patients were ranked into 3 comparison subgroups by the area of the effective AC opening from 4 to 1.5 cm2; 1.5 to 1 cm2 and less than 1 cm2. An echocardiographic study was performed with the calculation of all the necessary parameters for the study.Results. The comparison subgroups were comparable in terms of effective orifice area (AVA), effective orifice area index (IAVA), body mass index (BMI), LV UO index, and LV FV (p > 0.05). However, the indicators Vmax, Gmean, and AT in patients with a bivalve AK structure in all comparison subgroups were significantly higher than in patients with a tricuspid structure. Comparison subgroup with AVA from 4 to 1.5 cm2: Vmax 2.8 ± 9 m/s and 2.5 ± 6 m/s p = 0.02. Gmean 18.6 ± 7.2 mm Hg and 15 ± 6 mm Hg p = 0.03, AT 82 ± 12 ms and 70 ± 10 ms p = 0.002. Comparison subgroup with AVA from 1.5 to 1 cm2: Vmax 3.7 ± 0.8 m/s and 3.5 ± 0.6 m/s p = 0.02. Average transaortic gradient 37 ± 10 mm Hg and 29 ± 5 mm Hg p = 0.04, AT 103 ± 11 ms and 94 ± 10 ms p = 0.02. Comparison subgroup with an effective area of less than 1 cm2: Vmax 5.7 ± 1.2 m/s and 4.7 ± 0.7 m/s p = 0.001, Gmean 54 ± 15 and 43 ± 11 mm Hg p < 0.001, AT 127 ± 20 ms and 112 ± 10 ms p = 0.002.Conclusion. Echocardiographic indicators of Vmax and Gmean in patients with bivalve AC structure have higher values than in patients with tricuspid AC structure with a comparable opening area.


Sign in / Sign up

Export Citation Format

Share Document