scholarly journals Determination of the unknown boundary condition of the inverse parabolic problems via semigroup method

2013 ◽  
Vol 2013 (1) ◽  
Author(s):  
Ebru Ozbilge
2010 ◽  
Author(s):  
Ebru Ozbilge ◽  
Theodore E. Simos ◽  
George Psihoyios ◽  
Ch. Tsitouras

2012 ◽  
Vol 134 (4) ◽  
Author(s):  
A. E. Segall ◽  
C. Drapaca ◽  
D. Engels ◽  
T. Zhu ◽  
H. Yang

From an analytical standpoint, a majority of calculations use known boundary conditions (temperature or flux) and the so-called direct route to determine internal temperatures, strains, and/or stresses. For such problems where the thermal boundary condition is known a priori, the analytical procedure and solutions are tractable for the linear case where the thermophysical properties are independent of temperature. On the other hand, the inverse route where the boundary conditions must be determined from remotely determined temperature and/or flux data is much more difficult mathematically, as well as inherently sensitive to data errors (i.e., ill-posed). When solutions are available, they are often restricted to a harsh, albeit unrealistic step change in temperature or flux and/or are only valid for relatively short time frames before temperature changes occur at the far boundary. While the two approaches may seem to be at odds with each other, a generalized direct solution based on polynomial temperature or strain-histories can also be used to determine unknown boundary conditions via least-squares determination of coefficients. Once the inverse problem (and unknown boundary condition) is solved via these coefficients, the resulting polynomial can then be used with the generalized direct solution to determine the thermal- and stress-states as a function of time and position. When used for both thick slabs and tubes, excellent agreement was seen for various test cases. In fact, the derived solutions appear to be well suited for many thermal scenarios, provided the analysis is restricted to the time interval used to determine the polynomial and the thermophysical properties that do not vary with temperature. Since temperature dependent properties can certainly be an issue that affects accuracy in these types of calculations, some recent analytical procedures for both direct and inverse solutions are also discussed.


2021 ◽  
Vol 11 (4) ◽  
pp. 1482
Author(s):  
Róbert Huňady ◽  
Pavol Lengvarský ◽  
Peter Pavelka ◽  
Adam Kaľavský ◽  
Jakub Mlotek

The paper deals with methods of equivalence of boundary conditions in finite element models that are based on finite element model updating technique. The proposed methods are based on the determination of the stiffness parameters in the section plate or region, where the boundary condition or the removed part of the model is replaced by the bushing connector. Two methods for determining its elastic properties are described. In the first case, the stiffness coefficients are determined by a series of static finite element analyses that are used to obtain the response of the removed part to the six basic types of loads. The second method is a combination of experimental and numerical approaches. The natural frequencies obtained by the measurement are used in finite element (FE) optimization, in which the response of the model is tuned by changing the stiffness coefficients of the bushing. Both methods provide a good estimate of the stiffness at the region where the model is replaced by an equivalent boundary condition. This increases the accuracy of the numerical model and also saves computational time and capacity due to element reduction.


2021 ◽  
Author(s):  
Sangita Pimpare ◽  
Chandrashekhar Shalik Sutar ◽  
Kamini Chaudhari

Abstract In the proposed research work we have used the Gaussian circular heat source. This heat source is applied with the heat flux boundary condition along the thickness of a circular plate with a nite radius. The research work also deals with the formulation of unsteady-state heat conduction problems along with homogeneous initial and non-homogeneous boundary condition around the temperature distribution in the circular plate. The mathematical model of thermoelasticity with the determination of thermal stresses and displacement has been studied in the present work. The new analytical method, Reduced Differential Transform has been used to obtain the solution. The numerical results are shown graphically with the help of mathematical software SCILAB and results are carried out for the material copper.


Sign in / Sign up

Export Citation Format

Share Document