scholarly journals Assessing the selectivity of serine proteases inhibitors using structural similarity

2009 ◽  
Vol 3 (S1) ◽  
Author(s):  
N Fechner ◽  
A Jahn ◽  
G Hinselmann ◽  
A Zell
2012 ◽  
Vol 28 (3) ◽  
pp. 639-643 ◽  
Author(s):  
Agnieszka Markowska ◽  
Magdalena Bruzgo ◽  
Arkadiusz Surażyński ◽  
Krystyna Midura-Nowaczek

2006 ◽  
Vol 10 (1) ◽  
pp. 81-83 ◽  
Author(s):  
Gleb D. Perekhodtsev

2011 ◽  
Vol 79 (8) ◽  
pp. 3438-3444 ◽  
Author(s):  
Markus O. Henke ◽  
Gerrit John ◽  
Christina Rheineck ◽  
Shashi Chillappagari ◽  
Lutz Naehrlich ◽  
...  

ABSTRACTAirway mucins are the major molecular constituents of mucus. Mucus forms the first barrier to invading organisms in the airways and is an important defense mechanism of the lung. We confirm that mucin concentrations are significantly decreased in airway secretions of subjects with cystic fibrosis (CF) who have chronicPseudomonas aeruginosainfection. In sputum from CF subjects without a history ofP. aeruginosa, we found no significant difference in the mucin concentration compared to mucus from normal controls. We demonstrate that mucins can be degraded by synthetic human neutrophil elastase (HNE) andP. aeruginosaelastase B (pseudolysin) and that degradation was inhibited by serine proteases inhibitors (diisopropyl fluorophosphates [DFP], phenylmethylsulfonyl fluoride [PMSF], and 1-chloro-3-tosylamido-7-amino-2-heptanone HCl [TLCK]). The mucin concentration in airway secretions from CF subjects is similar to that for normal subjects until there is infection byP. aeruginosa, and after that, the mucin concentration decreases dramatically. This is most likely due to degradation by serine proteases. The loss of this mucin barrier may contribute to chronic airway infection in the CF airway.


2012 ◽  
Vol 2012 ◽  
pp. 1-15 ◽  
Author(s):  
Philip G. Ashton-Rickardt

The serine proteases of T lymphocytes provide immunity to infection. Serine Proteases Inhibitors (serpins) control the recognition of antigen, effector function, and homeostatic control of T lymphocytes through the inhibition of serine protease targets. Serpins are important promoters of cellular viability through their inhibition of executioner proteases, which affects the survival and development of long-lived memory T cells. The potent antiapoptotic properties of serpins can also work against cellular immunity by protecting viruses and tumors from eradication by T lymphocytes. Recent insights from knockout mouse models demonstrate that serpins also are required for hematological progenitor cells and so are critical for the development of lineages other than T lymphocytes. Given the emerging role of serpins in multiple aspects of lymphocyte immunity and blood development, there is much potential for new therapeutic approaches based directly on serpins or knowledge gained from identifying their physiologically relevant protease targets.


2014 ◽  
Vol 70 (a1) ◽  
pp. C465-C465
Author(s):  
Desheng Liu ◽  
Tatsuya Suzuki ◽  
Shoichiro Horita ◽  
Takeshi Kawai ◽  
Jun Ishibashi ◽  
...  

Oryctin is a 66-amino-acid protein purified from the larval haemolymph of the coconut rhinoceros beetle Oryctes rhinoceros, which shows no sequence similarity to any other protein known. We determined the solution NMR structure of oryctin, and found that oryctin had a similar backbone fold to the turkey ovomucoid domain 3, OMTKY3, a Kazal-type serine protease inhibitor [1]. Based on the structural similarity, we tested the serine protease inhibitory activity of oryctin, and found that oryctin does inhibit some serine proteases, such as α-chymotrypsin, endopeptidase K, subtilisin Carlsberg, and leukocyte elastase [1]. However, oryctin cannot inhibit trypsin at all. In this study, we have introduced point mutations to the putative inhibition loop of oryctin to obtain oryctin mutants that can inhibit trypsin. Then, we have solved the crystal structure of such an oryctin mutant, M14R-oryctin with a Ki value of 3.410.8 nM, in complex with trypsin to reveal how it binds to and inhibits trypsin. As predicted, the putative inhibition loop lay on the substrate binding cleft of trypsin. Particularly, the side chain of R14 fit into the S1 pocket of trypsin by forming hydrogen/ionic bonds with D191, S192 and G216 at the bottom of the S1 pocket and G195, D196, S197 and S212 at its entrance. In addition, R65 located in the C-terminal α-helix of M14R-oryctin formed hydrogen bonds with S40 and F44 of trypsin. The latter interaction, which is unique to oryctin, enhances its binding affinity to trypsin.


2021 ◽  
Vol 15 (1) ◽  
pp. 1-11
Author(s):  
Amivi Edefia Akpalo ◽  
Kwami Lumo Awaga ◽  
Amivi Kafui Tete-Benissan

Based on mechanisms of fibrin clot polymerization and dissolution, it is possible to modulate fibrin formation and removal. Ageratum conyzoides Linn. (Asteraceae) is an annual herb with a long history of traditional medicine. There is high variability in the secondary metabolites of this plant which include flavonoids, and these molecules belong to a class of serine proteases inhibitors. Several plant enzymes belonging to the classes of serine proteases were observed to be active on the cascade of coagulation pathways. The aim of this study was to observe if even Ageratum conyzoides Linn. aqueous leaves extract contained proteases which could structurally modify the fibrin clot formation. To prepare plant extracts, dry leaves of the plant were extracted with distilled water. Fibrin gels were prepared by mixtures containing fibrinogen and thrombin with or without extract. Fibrin networks were disrupted by a denaturation buffer. Samples were deposited in 8% polyacrylamide gel and Coomassie blue was used to reveal migration. Our extract contained phytochemicals class flavonoids which are thrombin inhibitors. But our results support the evidence that the same extract contained plant serine proteases, specifically a fibrinogenase which hydrolyzed fibrinogen but not like thrombin.Keywords: Fibrin/Fibrinogen, structural modification, Ageratum conyzoides Linn., phytoproteases.


Author(s):  
G. Kasnic ◽  
S. E. Stewart ◽  
C. Urbanski

We have reported the maturation of an intracisternal A-type particle in murine plasma cell tumor cultures and three human tumor cell cultures (rhabdomyosarcoma, lung adenocarcinoma, and osteogenic sarcoma) after IUDR-DMSO activation. In all of these studies the A-type particle seems to develop into a form with an electron dense nucleoid, presumably mature, which is also intracisternal. A similar intracisternal A-type particle has been described in leukemic guinea pigs. Although no biological activity has yet been demonstrated for these particles, on morphologic grounds, and by the manner in which they develop within the cell, they may represent members of the same family of viruses.


Author(s):  
M. Boublik ◽  
R.M. Wydro ◽  
W. Hellmann ◽  
F. Jenkins

Ribosomes are ribonucleoprotein particles necessary for processing the genetic information of mRNA into proteins. Analogy in composition and function of ribosomes from diverse species, established by biochemical and biological assays, implies their structural similarity. Direct evidence obtained by electron microscopy seems to be of increasing relevance in understanding the structure of ribosomes and the mechanism of their role in protein synthesis.The extent of the structural homology between prokaryotic and eukaryotic ribosomes has been studied on ribosomes of Escherichia coli (E.c.) and Artemia salina (A.s.). Despite the established differences in size and in the amount and proportion of ribosomal proteins and RNAs both types of ribosomes show an overall similarity. The monosomes (stained with 0.5% aqueous uranyl acetate and deposited on a fine carbon support) appear in the electron micrographs as round particles with a diameter of approximately 225Å for the 70S E.c. (Fig. 1) and 260Å for the 80S A.s. monosome (Fig. 2).


Sign in / Sign up

Export Citation Format

Share Document