cellular viability
Recently Published Documents


TOTAL DOCUMENTS

351
(FIVE YEARS 114)

H-INDEX

31
(FIVE YEARS 3)

Author(s):  
Filipa A. M. M. Gonçalves ◽  
Ana Fonseca ◽  
Rosemeyre Cordeiro ◽  
Ana Piedade ◽  
Henrique Faneca ◽  
...  

Abstract Additive Manufacturing (AM) technologies are an effective route to fabricate tailor made scaffolds for tissue engineering (TE) and regenerative medicine with microstereo-lithography (µSLA) being one of the most promising techniques to produce high quality 3D structures. Here, we report the crosslinking studies of fully biobased unsaturated polyesters (UPs) with 2-hydroxyethyl methacrylate (HEMA) as the unsaturated monomer (UM), using thermal and µSLA crosslinking processes. The resulting resins were fully characterized in terms of their thermal and mechanical properties. Determination of gel content, water contact angle (WCA), topography and morphology analysis by atomic force microscopy (AFM) and scanning electron microscopy (SEM) were also performed. The results show that the developed unsaturated polyester resins (UPRs) have promising properties for µSLA. In vitro cytotoxicity assays performed with 3T3-L1 cell lines showed that the untreated scaffolds exhibited a maximum cellular viability around 60 %, which was attributed to the acidic nature of the UPRs. The treatment of the UPRs and scaffolds with ethanol (EtOH) improved the cellular viability to 100%. The data presented in this manuscript contribute to improve the performance of biobased unsaturated polyesters in additive manufacturing.


2022 ◽  
Author(s):  
Youssef T. Abdou ◽  
Sheri M. Saleeb ◽  
Khaled Abdel-Raouf ◽  
Mohamed Allam ◽  
Mustafa Adel ◽  
...  

Peptide-based drugs have emerged as highly selective and potent cancer therapy. Cancer is one of the leading causes of death worldwide. Multiple approaches have been developed towards cancer treatment, including chemotherapy, radiation, and hormonal therapy; however, such procedures' non-specificity, toxicity, and inefficiency present a hurdle. In this study, we developed a support vector machine (SVM) model to detect the potential anticancer properties of novel peptides through scanning the American University in Cairo Red Sea metagenomics library. Further, we performed in silico studies on a novel 37-mer antimicrobial peptide mined from SVM pipeline analysis. This peptide was further modified to enhance its anticancer activity, analyzed for gene oncology, and subsequently synthesized. The anticancer properties of this 37-mer peptide were evaluated via cellular viability and cell morphology of SNU449, HepG2, SKOV3, and HeLa cells, using MTT assay. Furthermore, we assessed the migration capability of SNU449 and SKOV3 via scratch wound healing assay. Moreover, the targeted selectivity of the peptide for cancerous cells was assessed by testing its hemolytic activity on human erythrocytes. The peptide caused a significant reduction in cellular viability and critically affected the morphology of hepatocellular carcinoma (SNU449 and HepG2), ovarian cancer (SKOV3), and to a limited extent, cervical cancer cell lines (HeLa), in addition to decreasing viability of human fibroblast cell line (1Br-hTERT). Peptide treatment significantly affected the proliferation and migration ability of SNU449 and SKOV3 cells. Annexin V assay was used to evaluate induced cell death upon peptide treatment, attributing programmed cell death (Apoptosis) as the main cause of cell death in SNU449 cells. Finally, we established broad-spectrum antimicrobial properties of the peptide on both gram-positive and gram-negative bacterial strains. Thus, these findings infer the novelty of the peptide as a potential anticancer and antimicrobial agent.


2022 ◽  
Author(s):  
Anshul Rajput ◽  
Arijit De ◽  
Amit Mondal ◽  
Kiran Das ◽  
Biswanath Maity ◽  
...  

Herein, a two-step chemoenzymatic process for the synthesis of medicinally important 3-deoxygenated anthra-9,10-quinones is developed. It involves a regio- and stereoselective reduction of hydroanthraquinones to (R)-configured dihydroanthracenones using an anthrol...


2021 ◽  
pp. 1-6
Author(s):  
Wendy Yen Nee See ◽  
Fazliana Ismail ◽  
Siti Hamimah Sheikh Abdul Kadir ◽  
Visvaraja Subrayan
Keyword(s):  

Cells ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 3519
Author(s):  
Jiancheng Yang ◽  
Gejing Zhang ◽  
Qingmei Li ◽  
Qinghua Tang ◽  
Yan Feng ◽  
...  

There are numerous studies that investigate the effects of static magnetic fields (SMFs) on osteoblasts and osteoclasts. However, although osteocytes are the most abundant cell type in bone tissue, there are few studies on the biological effects of osteocytes under magnetic fields. Iron is a necessary microelement that is involved in numerous life activities in cells. Studies have shown that high static magnetic fields (HiSMF) can regulate cellular iron metabolism. To illustrate the effect of HiSMF on activities of osteocytes, and whether iron is involved in this process, HiSMF of 16 tesla (T) was used, and the changes in cellular morphology, cytoskeleton, function-related protein expression, secretion of various cytokines, and iron metabolism in osteocytes under HiSMF were studied. In addition, the biological effects of HiSMF combined with iron preparation and iron chelator on osteocytes were also investigated. The results showed that HiSMF promoted cellular viability, decreased apoptosis, increased the fractal dimension of the cytoskeleton, altered the secretion of cytokines, and increased iron levels in osteocytes. Moreover, it was found that the biological effects of osteocytes under HiSMF are attenuated or enhanced by treatment with a certain concentration of iron. These data suggest that HiSMF-regulated cellular iron metabolism may be involved in altering the biological effects of osteocytes under HiSMF exposure.


2021 ◽  
Vol 25 (2) ◽  
pp. 13-23
Author(s):  
Thi Thu Vu ◽  
Thi Bich Pham ◽  
Thi Hai Yen Ngo

Objective: The study was conducted to evaluate the affect of Dimethyl Sulfoxide (DMSO) concentration on the viability of H9C2 cells under the different cultural conditions. Methods: H9C2 cells were cultured under normal conditions and subjected to hypoxia/reoxygenation model. DMSOat the doses of 0,001÷10% (v/v) was added to the cultural medium during normal culture period and reoxygenation period. Cellular viability of the experimental groups was assessed by using CCK-8 kit. Results: The results indicated that the viability of H9C2 cardiomyocytes was stable in the different culture media supplied with DMSO at the doses of0,001÷0,5% (v/v). Meanwhile, supplementation of DMSO at the doses of1% and 2% significantly decreased the survival rate of H9C2 cells (v/v,p<0,05). Conclusion: The affect of DMSO on H9C2 cardiomyocytes is dose-dependant maner.


Author(s):  
Annika Dwucet ◽  
Maximilian Pruss ◽  
Qiyu Cao ◽  
Mine Tanriover ◽  
Varun V. Prabhu ◽  
...  

The purpose of this study was to examine whether the imipridone ONC201/TIC10 affects the metabolic and proliferative activity of medulloblastoma cells in vitro. Preclinical drug testing including extracellular flux analyses (agilent seahorse), MTT assays and Western blot analyses were performed in high and low c-myc-expressing medulloblastoma cells. Our data show that treatment with the imipridone ONC201/TIC10 leads to a significant inihibitory effect on the cellular viability of different medulloblastoma cells independent of c-myc expression. This effect is enhanced by glucose starvation. While ONC201/TIC10 decreases the oxidative consumption rates in D458 (c-myc high) and DAOY (c-myc low) cells extracellular acidification rates experienced an increase in D458 and a decrease in DAOY cells. Combined treatment with ONC201/TIC10 and the glycolysis inhibitor 2-Deoxyglucose led to a synergistic inhibitory effect on the cellular viability of medulloblastoma cells including spheroid models. In conclusion, our data suggest that ONC201/TIC10 has a profound anti-proliferative activity against medulloblastoma cells independent of c-myc expression. Metabolic targeting of medulloblastoma cells by ONC201/TIC10 can be significantly enhanced by an additional treatment with the glycolysis inhibitor 2-Deoxyglucose. Further investigations are warranted.


Medicina ◽  
2021 ◽  
Vol 57 (11) ◽  
pp. 1271
Author(s):  
Hyun-Jin Lee ◽  
Young-Min Song ◽  
Seunghoon Baek ◽  
Yoon-Hee Park ◽  
Jun-Beom Park

Background and Objectives: Vitamin D is a bone modulator widely used in regenerative medicine. This study aimed to analyze the effects of vitamin D on the osteogenic differentiation and mineralization of human mesenchymal stem cells. Materials and Methods: Spheroids were fabricated using human bone marrow-derived stem cells, and were cultured in the presence of vitamin D at concentrations of 0, 0.1, 1, 10, and 100 nM. Stem cell spheroids were fabricated and the morphological evaluation was conducted on days 1, 3, 7 and 14. Determination of qualitative cellular viability was performed with Live/Dead Kit assay on days 1 and 7. Quantitative cellular viability was evaluated with Cell Counting Kit-8 on days 1, 3, 7, and 14. To analyze the osteogenic differentiation of cell spheroids, alkaline phosphatase activity assays were performed with commercially available kit on days 7 and 14. Real-time polymerase chain reaction was used to determine the expression levels of RUNX2, BSP, OCN, and COL1A1 on days 7 and 14. Results: The stem cells produced well-formed spheroids, and addition of vitamin D did not result in any noticeable changes in the shape. The addition of vitamin D did not significantly change the diameter of the spheroids at 0, 0.1, 1, 10, or 100 nM concentrations. Quantitative cell viability results from days 1, 3, 7 and 14 showed no significant difference between groups (p > 0.05). There was significantly higher alkaline phosphatase activity in the 0.1 nM group when compared with the control group on day 14 (p < 0.05). Real-time polymerase chain reaction results demonstrated that the mRNA expression levels of RUNX2, OCN, and COL1A1 were significantly increased when vitamin D was added to the culture. Conclusions: Based on these findings, we concluded that vitamin D could be applied to the increased osteogenicity of stem cell spheroids.


Diseases ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 82
Author(s):  
Jenna L. Gordon ◽  
Kristin J. Hinsen ◽  
Melissa M. Reynolds ◽  
Mark A. Brown

Despite enormous advances in the detection and treatment of breast cancer, it still remains the leading cancer diagnosis and has the second highest mortality rate. Thus, breast cancer research is a high priority for academics and clinicians alike. Based on previous research indicating the potential of nitric oxide (NO) and SMYD-3 inhibition, this work sought to expand upon these concepts and combine the two approaches. Both NO (from S-Nitrosoglutathione (GSNO)), termed Group 1, and a combination therapeutic, inhibitor-4 (SMYD-3 inhibitor) plus NO (from GSNO), termed Group 2, were evaluated for their efficacy on breast carcinoma cell lines MCF7 and MDA-MB-231, and the normal MCF10A breast cell line, using cellular viability, colony formation capacity, cytotoxicity, and cellular apoptosis analysis. These results indicated that, in Group 1, breast carcinoma lines MCF7 and MDA-MB-231, cells experienced a moderate reduction in cellular viability (~20–25%), a large reduction in colony formation capacity (~80–90%), a moderate increase in the relative number of dead cells, and a moderate increase in cellular apoptosis. Group 2 was significantly more impactful, with a ~50% knockdown in cellular viability, a 100% reduction in colony formation capacity, a large increase in the relative number of dead cells, and a large increase in cellular apoptosis. Additionally, Group 2 induced a very small impact on the normal MCF10A cell line. Cumulatively, this work revealed the exciting impact of this combination therapeutic, indicating its potential for clinical application and further research.


Sign in / Sign up

Export Citation Format

Share Document