scholarly journals An Emerging Role for Serine Protease Inhibitors in T Lymphocyte Immunity and Beyond

2012 ◽  
Vol 2012 ◽  
pp. 1-15 ◽  
Author(s):  
Philip G. Ashton-Rickardt

The serine proteases of T lymphocytes provide immunity to infection. Serine Proteases Inhibitors (serpins) control the recognition of antigen, effector function, and homeostatic control of T lymphocytes through the inhibition of serine protease targets. Serpins are important promoters of cellular viability through their inhibition of executioner proteases, which affects the survival and development of long-lived memory T cells. The potent antiapoptotic properties of serpins can also work against cellular immunity by protecting viruses and tumors from eradication by T lymphocytes. Recent insights from knockout mouse models demonstrate that serpins also are required for hematological progenitor cells and so are critical for the development of lineages other than T lymphocytes. Given the emerging role of serpins in multiple aspects of lymphocyte immunity and blood development, there is much potential for new therapeutic approaches based directly on serpins or knowledge gained from identifying their physiologically relevant protease targets.

Author(s):  
Marilina Antonelou ◽  
Rhys D R Evans ◽  
Scott R Henderson ◽  
Alan D Salama

Abstract Crescentic glomerulonephritis (CGN) results from a diverse set of diseases associated with immune dysregulation and the breakdown of self-tolerance to a wide range of autoantigens, some known and some that remain unknown. Experimental data demonstrate that neutrophils have an important role in the pathogenesis of CGN. Upon activation, neutrophils generate reactive oxygen species, release serine proteases and form neutrophil extracellular traps (NETs), all of which can induce direct tissue damage. In addition, serine proteases such as myeloperoxidase and proteinase 3, presented on NETs, can be processed and recognized as autoantigens, leading to the generation and maintenance of autoimmune responses in susceptible individuals. The basis of the specificity of autoimmune responses in different patients to NET proteins is unclear, but relates at least in part to differences in human leucocyte antigen expression. Conditions associated with CGN are often characterized by aberrant neutrophil activation and NETosis and, in some, impaired NET degradation. Targeting neutrophil degranulation and NETosis is now possible using a variety of novel compounds and may provide a promising therapeutic alternative to glucocorticoid use, which has been a mainstay of management in CGN for decades and is associated with significant adverse effects. In this review, we discuss the evidence supporting the role of neutrophils in the development of CGN and the pathways identified in neutrophil degranulation and NETosis that may translate to novel therapeutic applications.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
S. Duboux ◽  
M. Golliard ◽  
J. A. Muller ◽  
G. Bergonzelli ◽  
C. J. Bolten ◽  
...  

AbstractThe Serine Protease Inhibitor (serpin) protein has been suggested to play a key role in the interaction of bifidobacteria with the host. By inhibiting intestinal serine proteases, it might allow bifidobacteria to reside in specific gut niches. In inflammatory diseases where serine proteases contribute to the innate defense mechanism of the host, serpin may dampen the damaging effects of inflammation. In view of the beneficial roles of this protein, it is important to understand how its production is regulated. Here we demonstrate that Bifidobacterium longum NCC 2705 serpin production is tightly regulated by carbohydrates. Galactose and fructose increase the production of this protein while glucose prevents it, suggesting the involvement of catabolite repression. We identified that di- and oligosaccharides containing galactose (GOS) and fructose (FOS) moieties, including the human milk oligosaccharide Lacto-N-tetraose (LNT), are able to activate serpin production. Moreover, we show that the carbohydrate mediated regulation is conserved within B. longum subsp. longum strains but not in other bifidobacterial taxons harboring the serpin coding gene, highlighting that the serpin regulation circuits are not only species- but also subspecies- specific. Our work demonstrates that environmental conditions can modulate expression of an important effector molecule of B. longum, having potential important implications for probiotic manufacturing and supporting the postulated role of serpin in the ability of bifidobacteria to colonize the intestinal tract.


Author(s):  
Natalia Bryniarska-Kubiak ◽  
Andrzej Kubiak ◽  
Małgorzata Lekka ◽  
Agnieszka Basta-Kaim

AbstractNervous system diseases are the subject of intensive research due to their association with high mortality rates and their potential to cause irreversible disability. Most studies focus on targeting the biological factors related to disease pathogenesis, e.g. use of recombinant activator of plasminogen in the treatment of stroke. Nevertheless, multiple diseases such as Parkinson’s disease and Alzheimer’s disease still lack successful treatment. Recently, evidence has indicated that physical factors such as the mechanical properties of cells and tissue and topography play a crucial role in homeostasis as well as disease progression. This review aims to depict these factors’ roles in the progression of nervous system diseases and consequently discusses the possibility of new therapeutic approaches. The literature is reviewed to provide a deeper understanding of the roles played by physical factors in nervous system disease development to aid in the design of promising new treatment approaches. Graphic abstract


2014 ◽  
Vol 325 (2) ◽  
pp. 58-64 ◽  
Author(s):  
Tuula Salo ◽  
Marilena Vered ◽  
Ibrahim O. Bello ◽  
Pia Nyberg ◽  
Carolina Cavalcante Bitu ◽  
...  

Diagnostics ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 192
Author(s):  
Leonie Konczalla ◽  
Anna Wöstemeier ◽  
Marius Kemper ◽  
Karl-Frederik Karstens ◽  
Jakob Izbicki ◽  
...  

The idea of a liquid biopsy to screen, surveil and treat cancer patients is an intensively discussed and highly awaited tool in the field of oncology. Despite intensive research in this field, the clinical application has not been implemented yet and further research has to be conducted. However, one component of the liquid biopsy is circulating tumor cells (CTCs) whose potential for clinical application is evaluated in the following. CTCs can shed from primary tumors to the peripheral blood at any time point during the progress of a malignant disease. Following, one single CTC can be the origin for distant metastasis at later cancer stage. Thus, CTCs have great potential to either be used in cancer diagnostics and patient stratification or to function as a target for new therapeutic approaches to stop tumor dissemination and metastasis at the very early beginning. Due to the biological fundamental role of CTCs in tumor progression, here, we provide an overview of CTCs in gastrointestinal cancers and their potential use in the clinical setting. In particular, we discuss the usage of CTC for screening and stratifying patients’ risk. Moreover, we will discuss the potential role of CTCs for treatment specification and treatment monitoring.


2019 ◽  
Vol 26 (3) ◽  
pp. 235-235

In the Review Article entitled “An Emerging Role of Endometrial Inflammasome in Reproduction: New Therapeutic Approaches” published in Protein & Peptides Letters, 2018, Vol. 26, No. 5, the affiliations of authors are revised due to recent restructuring that took place within the Institution for which the authors work for. The revised affiliation is as follows: </p><p> Fiorella Di Nicuoloa,b,*, Monia Specchiac, Lorenza Trentavizic, Alfredo Pontecorvid, Giovanni Scambiacc,e and Nicoletta Di Simoneb,c </p><p> aIstituto Scientifico Internazionale Paolo VI, ISI, Università Cattolica del Sacro Cuore, Rome, Italia; bFondazione Policlinico Universitario A. Gemelli IRCCS, U.O.C. di Ostetricia e Patologia Ostetrica, Dipartimento di Scienze della Salute della Donna e del Bambino, Roma, Italia; cUniversità Cattolica del Sacro Cuore, Istituto di Clinica Ostetrica e Ginecologica, Roma, Italia; dFondazione Policlinico Universitario A. Gemelli IRCCS, Dipartimento di Scienze Gastroenterologiche, Endocrino- Metaboliche e Nefro-Urologiche, Roma, Italia; eFondazione Policlinico Universitario A. Gemelli IRCCS, U.O.C. di Ginecologia Oncologica, Dipartimento di Scienze della Salute della Donna e del Bambino, Roma, Italia


2018 ◽  
Vol 315 (3) ◽  
pp. G364-G373 ◽  
Author(s):  
Shannon M. Bailey

The detrimental health effects of excessive alcohol consumption are well documented. Alcohol-induced liver disease (ALD) is the leading cause of death from chronic alcohol use. As with many diseases, the etiology of ALD is influenced by how the liver responds to other secondary insults. The molecular circadian clock is an intrinsic cellular timing system that helps organisms adapt and synchronize metabolism to changes in their environment. The clock also influences how tissues respond to toxic, environmental, and metabolic stressors, like alcohol. Consistent with the essential role for clocks in maintaining health, genetic and environmental disruption of the circadian clock contributes to disease. While a large amount of rich literature is available showing that alcohol disrupts circadian-driven behaviors and that circadian clock disruption increases alcohol drinking and preference, very little is known about the role circadian clocks play in alcohol-induced tissue injuries. In this review, recent studies examining the effect alcohol has on the circadian clock in peripheral tissues (liver and intestine) and the impact circadian clock disruption has on development of ALD are presented. This review also highlights some of the rhythmic metabolic processes in the liver that are disrupted by alcohol and potential mechanisms through which alcohol disrupts the liver clock. Improved understanding of the mechanistic links between the circadian clock and alcohol will hopefully lead to the development of new therapeutic approaches for treating ALD and other alcohol-related organ pathologies.


2018 ◽  
Vol 33 (12) ◽  
pp. 801-808 ◽  
Author(s):  
Jasna Jancic ◽  
Vesna Djuric ◽  
Boris Hencic ◽  
John N. van den Anker ◽  
Janko Samardzic

Migraine and epilepsy are classified as chronic paroxysmal neurologic disorders sharing many clinical features, as well as possible treatment options. This review highlights the similarities between migraine and epilepsy in pediatrics, focusing on epidemiologic, pathophysiological, genetic, clinical, and pharmacologic aspects. Despite the fact that several syndromes share symptoms of both migraine and epilepsy, further research is needed to clarify the pathophysiological and genetic basis of their comorbidity. Drugs used for prophylactic therapy of migraine and epilepsy have similar pharmacologic properties. The role of epileptic pharmacotherapy in the prophylaxis of migraine is assessed, including the use of conventional antiepileptic drugs, calcium channel blockers, and nonpharmacologic methods such as dietary therapy, supplements, and vagal nerve stimulation. Further randomized, controlled clinical trials assessing pharmacologic and nonpharmacologic methods for the treatment of both disorders are essential, in order to initiate new therapeutic approaches.


2014 ◽  
Vol 21 (4) ◽  
pp. R331-R344 ◽  
Author(s):  
Eric Monsalves ◽  
Kyle Juraschka ◽  
Toru Tateno ◽  
Sameer Agnihotri ◽  
Sylvia L Asa ◽  
...  

Pituitary adenomas are common intracranial neoplasms. Patients with these tumors exhibit a wide range of clinically challenging problems, stemming either from results of sellar mass effect in pituitary macroadenoma or the diverse effects of aberrant hormone production by adenoma cells. While some patients are cured/controlled by surgical resection and/or medical therapy, a proportion of patients exhibit tumors that are refractory to current modalities. New therapeutic approaches are needed for these patients. Activation of the AKT/phophotidylinositide-3-kinase pathway, including mTOR activation, is common in human neoplasia, and a number of therapeutic approaches are being employed to neutralize activation of this pathway in human cancer. This review examines the role of this pathway in pituitary tumors with respect to tumor biology and its potential role as a therapeutic target.


2020 ◽  
Author(s):  
Stéphane Duboux ◽  
Mireille Golliard ◽  
Jeroen Muller ◽  
Gabriela Bergonzelli ◽  
Christoph Bolten ◽  
...  

Abstract The Serine Protease Inhibitor (serpin) protein has been suggested to play a key role in the interaction of bifidobacteria with the host. By inhibiting intestinal serine proteases, it might allow bifidobacteria to reside in specific gut niches. In inflammatory diseases where serine proteases contribute to the innate defense mechanism of the host, serpin may dampen the damaging effects of inflammation. In view of the beneficial roles of this protein, it is important to understand how its production is regulated. Here we demonstrate that B. longum NCC 2705 serpin production is tightly regulated by carbohydrates. Galactose and fructose increase the production of this protein while glucose prevents it, suggesting the involvement of catabolite repression. We identified that di- and oligosaccharides containing galactose (GOS) and fructose (FOS) moieties, including the human milk oligosaccharide Lacto-N-tetraose (LNT), are able to activate serpin production. Moreover, we show that the carbohydrate mediated regulation is conserved within B. longum subsp. longum strains but not in other bifidobacterial taxons harboring the serpin coding gene, highlighting that the serpin regulation circuits are not only species- but also subspecies- specific. Our work demonstrates that environmental conditions can modulate expression of an important effector molecule of B. longum, having potential important implications for probiotic manufacturing and supporting the postulated role of serpin in the ability of bifidobacteria to colonize the intestinal tract.


Sign in / Sign up

Export Citation Format

Share Document