scholarly journals Genome-wide association studies using an adaptive two-stage analysis for a case-control design

2007 ◽  
Vol 1 (S1) ◽  
Author(s):  
Kijoung Song ◽  
Qing Lu ◽  
Xiwu Lin ◽  
Dawn Waterworth ◽  
Robert C Elston
2012 ◽  
Vol 2012 ◽  
pp. 1-15 ◽  
Author(s):  
Jingyuan Zhao ◽  
Zehua Chen

We propose a two-stage penalized logistic regression approach to case-control genome-wide association studies. This approach consists of a screening stage and a selection stage. In the screening stage, main-effect and interaction-effect features are screened by usingL1-penalized logistic like-lihoods. In the selection stage, the retained features are ranked by the logistic likelihood with the smoothly clipped absolute deviation (SCAD) penalty (Fan and Li, 2001) and Jeffrey’s Prior penalty (Firth, 1993), a sequence of nested candidate models are formed, and the models are assessed by a family of extended Bayesian information criteria (J. Chen and Z. Chen, 2008). The proposed approach is applied to the analysis of the prostate cancer data of the Cancer Genetic Markers of Susceptibility (CGEMS) project in the National Cancer Institute, USA. Simulation studies are carried out to compare the approach with the pair-wise multiple testing approach (Marchini et al. 2005) and the LASSO-patternsearch algorithm (Shi et al. 2007).


2017 ◽  
Author(s):  
Shang Xue ◽  
Funda Ogut ◽  
Zachary Miller ◽  
Janu Verma ◽  
Peter J. Bradbury ◽  
...  

AbstractLinear mixed models are widely used in humans, animals, and plants to conduct genome-wide association studies (GWAS). A characteristic of experimental designs for plants is that experimental units are typically multiple-plant plots of families or lines that are replicated across environments. This structure can present computational challenges to conducting a genome scan on raw (plot-level) data. Two-stage methods have been proposed to reduce the complexity and increase the computational speed of whole-genome scans. The first stage of the analysis fits raw data to a model including environment and line effects, but no individual marker effects. The second stage involves the whole genome scan of marker tests using summary values for each line as the dependent variable. Missing data and unbalanced experimental designs can result in biased estimates of marker association effects from two-stage analyses. In this study, we developed a weighted two-stage analysis to reduce bias and improve power of GWAS while maintaining the computational efficiency of two-stage analyses. Simulation based on real marker data of a diverse panel of maize inbred lines was used to compare power and false discovery rate of the new weighted two-stage method to single-stage and other two-stage analyses and to compare different two-stage models. In the case of severely unbalanced data, only the weighted two-stage GWAS has power and false discovery rate similar to the one-stage analysis. The weighted GWAS method has been implemented in the open-source software TASSEL.


Author(s):  
Tiit Nikopensius ◽  
Priit Niibo ◽  
Toomas Haller ◽  
Triin Jagomägi ◽  
Ülle Voog-Oras ◽  
...  

Abstract Background Juvenile idiopathic arthritis (JIA) is the most common chronic rheumatic condition of childhood. Genetic association studies have revealed several JIA susceptibility loci with the strongest effect size observed in the human leukocyte antigen (HLA) region. Genome-wide association studies have augmented the number of JIA-associated loci, particularly for non-HLA genes. The aim of this study was to identify new associations at non-HLA loci predisposing to the risk of JIA development in Estonian patients. Methods We performed genome-wide association analyses in an entire JIA case–control sample (All-JIA) and in a case–control sample for oligoarticular JIA, the most prevalent JIA subtype. The entire cohort was genotyped using the Illumina HumanOmniExpress BeadChip arrays. After imputation, 16,583,468 variants were analyzed in 263 cases and 6956 controls. Results We demonstrated nominal evidence of association for 12 novel non-HLA loci not previously implicated in JIA predisposition. We replicated known JIA associations in CLEC16A and VCTN1 regions in the oligoarticular JIA sample. The strongest associations in the All-JIA analysis were identified at PRKG1 (P = 2,54 × 10−6), LTBP1 (P = 9,45 × 10−6), and ELMO1 (P = 1,05 × 10−5). In the oligoarticular JIA analysis, the strongest associations were identified at NFIA (P = 5,05 × 10−6), LTBP1 (P = 9,95 × 10−6), MX1 (P = 1,65 × 10−5), and CD200R1 (P = 2,59 × 10−5). Conclusion This study increases the number of known JIA risk loci and provides additional evidence for the existence of overlapping genetic risk loci between JIA and other autoimmune diseases, particularly rheumatoid arthritis. The reported loci are involved in molecular pathways of immunological relevance and likely represent genomic regions that confer susceptibility to JIA in Estonian patients. Key Points• Juvenile idiopathic arthritis (JIA) is the most common childhood rheumatic disease with heterogeneous presentation and genetic predisposition.• Present genome-wide association study for Estonian JIA patients is first of its kind in Northern and Northeastern Europe.• The results of the present study increase the knowledge about JIA risk loci replicating some previously described associations, so adding weight to their relevance and describing novel loci.• The study provides additional evidence for the existence of overlapping genetic risk loci between JIA and other autoimmune diseases, particularly rheumatoid arthritis.


Sign in / Sign up

Export Citation Format

Share Document