scholarly journals A direct comparison of next generation sequencing enrichment methods using an aortopathy gene panel- clinical diagnostics perspective

2012 ◽  
Vol 5 (1) ◽  
Author(s):  
Whitney L Wooderchak-Donahue ◽  
Brendan O’Fallon ◽  
Larissa V Furtado ◽  
Jacob D Durtschi ◽  
Parker Plant ◽  
...  
2009 ◽  
Vol 55 (4) ◽  
pp. 641-658 ◽  
Author(s):  
Karl V Voelkerding ◽  
Shale A Dames ◽  
Jacob D Durtschi

Abstract Background: For the past 30 years, the Sanger method has been the dominant approach and gold standard for DNA sequencing. The commercial launch of the first massively parallel pyrosequencing platform in 2005 ushered in the new era of high-throughput genomic analysis now referred to as next-generation sequencing (NGS). Content: This review describes fundamental principles of commercially available NGS platforms. Although the platforms differ in their engineering configurations and sequencing chemistries, they share a technical paradigm in that sequencing of spatially separated, clonally amplified DNA templates or single DNA molecules is performed in a flow cell in a massively parallel manner. Through iterative cycles of polymerase-mediated nucleotide extensions or, in one approach, through successive oligonucleotide ligations, sequence outputs in the range of hundreds of megabases to gigabases are now obtained routinely. Highlighted in this review are the impact of NGS on basic research, bioinformatics considerations, and translation of this technology into clinical diagnostics. Also presented is a view into future technologies, including real-time single-molecule DNA sequencing and nanopore-based sequencing. Summary: In the relatively short time frame since 2005, NGS has fundamentally altered genomics research and allowed investigators to conduct experiments that were previously not technically feasible or affordable. The various technologies that constitute this new paradigm continue to evolve, and further improvements in technology robustness and process streamlining will pave the path for translation into clinical diagnostics.


2017 ◽  
Vol 36 (7) ◽  
pp. 1339-1342
Author(s):  
K. G. Joensen ◽  
A. L. Ø. Engsbro ◽  
O. Lukjancenko ◽  
R. S. Kaas ◽  
O. Lund ◽  
...  

2020 ◽  
Vol 79 (Suppl 1) ◽  
pp. 1223-1223
Author(s):  
J. R. Marques Soares ◽  
M. Antolin Mate ◽  
E. Garcia Arumi ◽  
E. Tizzano Ferrari ◽  
S. Bujan Rivas

Background:Systemic autoinflammatory diseases (sAID) are a group of conditions with recurrent episodes of inflammation in absence of infection or autoimmune response. Its physiopathology mainly lies on mono/poligenic mutations involving genes related to the innate immune system response. Next Generation Sequencing (NGS) platformss have been a big step forward on sAID diagnosis, although a clinical and genetic correlation is still needed.Objectives:To review the sAID related gene panel variants identified using NGS sAID gene panel on a cohort of adult patients screened for sAID from a referral third-level hospital.To correlate genetic and clinical findings for sAID related variants identified in order to the clinical suspicion diagnosis of sAID.Methods:A retrospective review of a cohort of adult (≥ 16 yo) patients with available NGS sAID related gene panel (MiSeq Illumina sequencing platform including intron and exon variants from up to 17 sAID genes, with coverage depth > x100) among 2014 and 2019 was performed.Demographic, clinical and genetic data were collected in a database.Genetic variants were classified according to the American College of Medical Genetics/Association for Molecular Pathology classification as benign/likely benign/variable of unknown significance (VUS)/likely pathogenic/pathogenic. In case of polymorphisms or lack of genetic data, the variants were named as unclassified.A description of the cohort and an analysis of the correlation assessment between clinical data and genetic findings were performed.Results:246 out of 299 (82%) patients with NGS sAID gene panel had clinical data available. 170/246 (69%) were adult patients. The medium age was 48 yo, and the M/F ratio was 2.46. 87/170 (51%) adult patients presented 122 variants involving sAID genes (60/87 patients with a single variant). All the variants out of 7 seven were heterozygous variants.Variants were classified according to ACMG/AMP as follow: pathogenic/probably pathogenic: 22/122 (18%), unknown significance: 74/122 (60.6%), benign/probably benign: 6/122 (4.91%). 20/122 (16.4%) were unclassified variants or polymorphisms.The most frequent variants identified involved MEFV (54/122), NOD2/CARD15 (18/122) and TNFRSF1A (17/122 including 12 p.Arg121Gln variants) genes.37/122 (30%) variants correlated with the clinical picture in 33 patients, allowing to confirm the suspected diagnosis. Among the 122 variants, 7 not previously communicated variants were identified.No somatic variants were found.Conclusion:NGS sAID related gene panel is a useful tool for sAID diagnosis. In this cohort of 170 adult patients from a referral third-level hospital, genetic tests identified sAID related variants in almost half of them.20% of patients who underwent genetic NGS sAID related gene panel studies were finally diagnosed with sAID.The identification of a genetic variant (even pathogenic / likely pathogenic variant) is not diagnostic for sAID if there is not a suggestive clinical picture.Despite genetic findings, a careful evaluation of clinical – genetic correlation is needed to confirm the suspicion diagnosis, especially for low penetrance variants like TNFRSF1A p. Arg121Gln.References:Diagnostic utility of a targeted next-generation sequencing gene panel in the clinical suspicion of systemic autoinflammatory diseases: a multi-center study. Karacan I, Balamir A, Uğurlu S, et al. . Rheumatol Int. 2019 May;39(5):911-919. doi: 10.1007/s00296-019-04252-5. Epub 2019 Feb 19.Disclosure of Interests:None declared


2018 ◽  
Vol 110 (1) ◽  
pp. 6-15 ◽  
Author(s):  
Masayuki Nagahashi ◽  
Yoshifumi Shimada ◽  
Hiroshi Ichikawa ◽  
Hitoshi Kameyama ◽  
Kazuaki Takabe ◽  
...  

2017 ◽  
Vol 142 (3) ◽  
pp. 353-357 ◽  
Author(s):  
Mitra Mehrad ◽  
Somak Roy ◽  
Humberto Trejo Bittar ◽  
Sanja Dacic

Context.— Different testing algorithms and platforms for EGFR mutations and ALK rearrangements in advanced-stage lung adenocarcinoma exist. The multistep approach with single-gene assays has been challenged by more efficient next-generation sequencing (NGS) of a large number of gene alterations. The main criticism of the NGS approach is the detection of genomic alterations of uncertain significance. Objective.— To determine the best testing algorithm for patients with lung cancer in our clinical practice. Design.— Two testing approaches for metastatic lung adenocarcinoma were offered between 2012–2015. One approach was reflex testing for an 8-gene panel composed of DNA Sanger sequencing for EGFR, KRAS, PIK3CA, and BRAF and fluorescence in situ hybridization for ALK, ROS1, MET, and RET. At the oncologist's request, a subset of tumors tested by the 8-gene panel was subjected to a 50-gene Ion AmpliSeq Cancer Panel. Results.— Of 1200 non–small cell lung carcinomas (NSCLCs), 57 including 46 adenocarcinomas and NSCLCs, not otherwise specified; 7 squamous cell carcinomas (SCCs); and 4 large cell neuroendocrine carcinomas (LCNECs) were subjected to Ion AmpliSeq Cancer Panel. Ion AmpliSeq Cancer Panel detected 9 potentially actionable variants in 29 adenocarcinomas that were wild type by the 8-gene panel testing (9 of 29, 31.0%) in the following genes: ERBB2 (3 of 29, 10.3%), STK11 (2 of 29, 6.8%), PTEN (2 of 29, 6.8%), FBXW7 (1 of 29, 3.4%), and BRAF G469A (1 of 29, 3.4%). Four SCCs and 2 LCNECs showed investigational genomic alterations. Conclusions.— The NGS approach would result in the identification of a significant number of actionable gene alterations, increasing the therapeutic options for patients with advanced NSCLCs.


2018 ◽  
Vol 19 (1) ◽  
Author(s):  
Morgane Plutino ◽  
Annabelle Chaussenot ◽  
Cécile Rouzier ◽  
Samira Ait-El-Mkadem ◽  
Konstantina Fragaki ◽  
...  

2019 ◽  
Author(s):  
Heping Wang ◽  
Zhiwei Lu ◽  
Yaomin Bao ◽  
Yonghong Yang ◽  
Ronald de Groot ◽  
...  

Abstract Background: Pneumonia is one of the most important causes of morbidity and mortality in children. Identification and characterization of pathogens that cause infections are crucial for accurate treatment and accelerated recovery of the patients. However, in most cases the causative agent cannot be identified partly due to the limited spectrum covered by current diagnostics based on nucleic acid amplification. Therefore, in this study we explored the application of metagenomic next-generation sequencing (mNGS) for the diagnosis of children with severe pneumonia. Methods: From April to July 2017, 32 children were hospitalized with severe pneumonia in Shenzhen Children’s Hospital. Blood tests were conducted immediately after hospitalization to assess infection, oropharygeal swabs were collected to identify common pathogens. After bronchoscopy, bronchoalveolar lavage fluids (BALFs) were collected for further pathogen identification using standardized laboratory and mNGS. Results: Blood tests were normal in 3 of the 32 children. In oropharygeal swabs from 5 patients Mycoplasma pneumoniae by qPCR, 27 cases showed negative results for common pathogens. In BALFs we detected 6 cases with Mycoplasma pneumoniae with qPCR, 9 patients with adenovirus by using a Direct Immunofluorescence Assay (DFA) and 4 patients with bacterial infections, as determined by culture, In 3 of the cases a co-infection was detected. In 15 cases no common pathogens were found in BALF samples, using the current diagnostics, while in all the 32 BALFS pathogens were identified using mNGS, including adenovirus, Mycoplasma pneumoniae, Streptococcus pneumoniae, Haemophilus influenzae, Moraxella catarrhalis, cytomegalovirus andbocavirus. Conclusions: mNGS can increase the sensitivity of detection of the causative pathogens in children with severe pneumonia. In addition, mNGS will give more strain specific information, will help to identify new pathogens and could potentially help to trace and control outbreaks. In this study we have shown that it is feasible to have the results within 24 hours, making the application of mNGS feasible for clinical diagnostics.


2016 ◽  
Vol 98 (3) ◽  
pp. 228-234 ◽  
Author(s):  
Matthew B. Lanktree ◽  
Bekim Sadikovic ◽  
John S. Waye ◽  
Alexander Levstik ◽  
Bruce B. Lanktree ◽  
...  

JIMD Reports ◽  
2019 ◽  
Vol 51 (1) ◽  
pp. 53-61
Author(s):  
Gloria Muñoz ◽  
David García‐Seisdedos ◽  
Crina Ciubotariu ◽  
Miguel Piris‐Villaespesa ◽  
Marta Gandía ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document