scholarly journals Target gene expression levels and competition between transfected and endogenous microRNAs are strong confounding factors in microRNA high-throughput experiments

Silence ◽  
2012 ◽  
Vol 3 (1) ◽  
pp. 3 ◽  
Author(s):  
Takaya Saito ◽  
Pål Sætrom
iScience ◽  
2021 ◽  
pp. 103208
Author(s):  
Alexander A. Svoronos ◽  
Stuart G. Campbell ◽  
Donald M. Engelman

Database ◽  
2020 ◽  
Vol 2020 ◽  
Author(s):  
Chao-Yu Pan ◽  
Wen-Chang Lin

Abstract MicroRNAs (miRNAs) have been identified in many organisms, and they are essential for gene expression regulation in many critical cellular processes. The expression levels of these genes and miRNAs are closely associated with the progression of diseases such as cancers. Furthermore, survival analysis is a significant indicator for evaluating the criticality of these cellular processes in cancer progression. We established a web tool, miRNA Target Viewer (miR-TV), which integrates 5p-arm and 3p-arm miRNA expression profiles, mRNA target gene expression levels in healthy and cancer populations, and clinical data of cancer patients and their survival information. The developed miR-TV obtained miRNA-seq, mRNA-seq and clinical data from the Cancer Genome Atlas and potential miRNA target gene predictions from miRDB, targetScan and miRanda. The data presentation was implemented using the D3 javascript toolkit. The D3 toolkit is frequently used to provide an easy-to-use interactive interface. Our miR-TV provides a user-friendly and interactive interface, which can be beneficial for biomedical researchers to freely interrogate miRNA expression information and their potential target genes. We believe that such a data visualization bioinformatics tool is excellent for obtaining information from massive biological data. Database URL: http://mirtv.ibms.sinica.edu.tw


Reproduction ◽  
2017 ◽  
Vol 154 (1) ◽  
pp. 93-100 ◽  
Author(s):  
Kadri Rekker ◽  
Merli Saare ◽  
Elo Eriste ◽  
Tõnis Tasa ◽  
Viktorija Kukuškina ◽  
...  

The aetiology of endometriosis is still unclear and to find mechanisms behind the disease development, it is important to study each cell type from endometrium and ectopic lesions independently. The objective of this study was to uncover complete mRNA profiles in uncultured stromal cells from paired samples of endometriomas and eutopic endometrium. High-throughput mRNA sequencing revealed over 1300 dysregulated genes in stromal cells from ectopic lesions, including several novel genes in the context of endometriosis. Functional annotation analysis of differentially expressed genes highlighted pathways related to cell adhesion, extracellular matrix–receptor interaction and complement and coagulation cascade. Most importantly, we found a simultaneous upregulation of complement system components and inhibitors, indicating major imbalances in complement regulation in ectopic stromal cells. We also performed in vitro experiments to evaluate the effect of endometriosis patients’ peritoneal fluid (PF) on complement system gene expression levels, but no significant impact of PF on C3, CD55 and CFH levels was observed. In conclusion, the use of isolated stromal cells enables to determine gene expression levels without the background interference of other cell types. In the future, a new standard design studying all cell types from endometriotic lesions separately should be applied to reveal novel mechanisms behind endometriosis pathogenesis.


Lab on a Chip ◽  
2017 ◽  
Vol 17 (14) ◽  
pp. 2435-2442 ◽  
Author(s):  
Sangkwon Han ◽  
Hyung Jong Bae ◽  
Su Deok Kim ◽  
Wook Park ◽  
Sunghoon Kwon

An encoded viral micropatch is presented for localized target gene expression for high-throughput, high-content cell-based assays.


2020 ◽  
Vol 4 (Supplement_1) ◽  
Author(s):  
Morgan Gallo ◽  
Lindsey S Treviño ◽  
Tiffany A Katz

Abstract Perinatal exposure to bisphenol A (BPA) has been shown to reprogram the hepatic epigenome of rodents and may promote the development of various metabolic diseases later in life, such as nonalcoholic fatty liver disease (NAFLD). This developmental reprogramming is characterized by the creation of “super promoters” at target genes implicated in metabolic pathways. While it is unclear how these “super promoters” are created, their creation is potentially mediated through BPA and estrogen receptor (ER) interaction. In order to test this potential mechanism, in vitro methods were used to examine ER target gene expression via RT-qPCR in 2 human hepatic cell lines transiently transfected with the ER isoform, ER alpha, prior to BPA exposure for various lengths of time. Within individual time points, there were no significant differences in target gene expression levels between cells that had been transfected with ER alpha and the vector control. Gene expression levels in the target genes were visibly increased at the 24-hour exposure mark in both transfection groups in comparison to the 0- and 6-hour time points, however only a fraction of these increases were found to be statistically significant. These gene expression patterns are not only consistent with previous studies examining target gene expression in BPA-treated hepatic cell lines, but more importantly, suggest BPA does not act via ER alpha to orchestrate the epigenetic changes seen in vitro. BPA may interact with a different ER isoform or an unknown target to create the observed “super promoters” at target genes, reinforcing the promiscuity of BPA and other xenoestrogens in facilitating epigenetic modifications, and ultimately, disease phenotypes.


Sign in / Sign up

Export Citation Format

Share Document