scholarly journals A T cell receptor transgenic mouse model of inflammatory arthritis

1999 ◽  
Vol 3 (1) ◽  
Author(s):  
Andrew Cope
Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 1835-1835
Author(s):  
Joachim R. Gothert ◽  
Rachael Brake ◽  
C. Glenn Begley ◽  
David J. Izon

Abstract The acquired activation of stem cell leukemia (SCL) during T-lymphopoiesis is a common event in T-cell acute lymphoblastic leukemia. Here, we generated a novel tamoxifen-inducible transgenic mouse model (lck-ERT2-SCL) to study the cellular targets of acquired SCL activation during T-cell development. Upon tamoxifen treatment we observed the thymic emergence of abnormal, non-cycling CD8+TCRβlow and immature CD4+CD8+ (double-positive, DP) cells displaying increased viability. Unexpectedly, fetal thymic organ culture analysis of lck-ERT2-SCL thymi revealed the development of DP cells before the emergence of CD8+TCRβlow cells, which implied the derivation of CD8+TCRβlow cells from DPs rather than immature CD8 single-positive (SP) thymocytes. Interestingly, histone deacetylase (HDAC) inhibition with trichostatin A (TSA) had a divergent effect on SCL perturbed thymopoiesis: TSA increased T-cell receptor surface expression within DP and CD8 SP cells however did not alter the CD8 shifted CD4/CD8-ratio. Furthermore, we studied the expression of NOTCH1 in SCL induced TCRβlow thymocytes. Strikingly, we found that SCL induced NOTCH1-upregulation in DP TCRβlow cells. We therefore conclude that SCL promotes the emergence of abnormal CD8+TCRβlow cells by an only partially HDAC dependent mechanism from DP TCRβlow cells. Moreover, SCL induced DP TCRβlow cells are characterized by upregulated NOTCH1, which in turn might promote the effect of acquired NOTCH1 mutations during T-leukemogenesis.


1996 ◽  
Vol 183 (1) ◽  
pp. 203-213 ◽  
Author(s):  
F Granucci ◽  
M Rescigno ◽  
G Marconi ◽  
M Foti ◽  
P Ricciardi-Castagnoli

The mechanisms that induce T cell tolerance to circulating self-proteins are still controversial, and both the deletion and selection of autoreactive T cells have been observed in the thymus of transgenic mouse models. To address the question of the induction of tolerance to circulating self-constituents, a T cell receptor-transgenic mouse specific for the serum protein immunoglobulin (Ig) gamma and (IgG2ab) was generated. The choice of an allotype-specific T cell also allowed the generation of transgenic control mice not expressing the self-antigen. It was found that the transgenic T cells were not deleted in the thymus, did not become tolerant in the periphery, and regulated the function of gamma 2ab-positive B cells as shown by the lack of IgG2ab protein in the serum of the transgenic mice. In spite of this activity in vivo, the transgenic T cells did not proliferate in vitro in response to the allotype-specific peptide. Interestingly, antigen-specific T cell proliferation could be restored if the transgenic mice were previously challenged to induce IgG2ab responses. After this challenge, IgG2ab protein in the serum of the transgenic mice could be partially restored, although still remaining much lower than in control mice. In addition, there was a dramatic increase in serum IgE levels, suggesting that newly generated gamma 2ab-secreting B cells can be induced to switch to IgE in the presence of allotype-specific T cells. These results indicate that Ig-specific T cells may represent a late-acting form of T cell help for the regulation of the IgG2a-to-IgE class switch.


Sign in / Sign up

Export Citation Format

Share Document