scholarly journals The in Vitro Catabolism of Histamine in Tissues of the Digestive Tract in Sheep

1967 ◽  
Vol 8 (2) ◽  
pp. 136-149
Author(s):  
Ø. V. Sjaastad
Keyword(s):  
2019 ◽  
Author(s):  
Hoang T. M. D. Le ◽  
Kai K. Lie ◽  
Angela Etayo ◽  
Ivar Rønnestad ◽  
Øystein Sæle

AbstractThe transcriptome of nutrient sensing and the regulation of gut motility by nutrients in a stomachless fish with a short digestive tract; the ballan wrasse (Labrus berggylta) were investigated. Using an in vitro model, we differentiate how signals initiated by physical stretch and nutrients modulate the gut evacuation rate and motility patterns, and transcriptomic changes. Stretch on the intestine by inert cellulose initiated fast evacuation out of the anterior intestine compared to the digestible protein and lipid. Stretch on the intestine upregulated genes associated with increased muscle activity, whereas nutrients stimulated pathways related to ribosomal activity and the increase in the expression of several neuropeptides which are directly involved in gut motility regulation. Our findings show that physical pressure in the intestine initiate contractions propelling the matter towards the exit, whereas the sensing of nutrients modulates the motility to prolong the residence of digesta in the digestive tract for optimal digestion.Summary statementPressure by food speed up peristalsis in the intestine, but the intestines ability to sense nutrients slow down peristalsis for better digestion. This is partly controlled by genetic regulation.


2008 ◽  
Vol 14 (4) ◽  
pp. 311 ◽  
Author(s):  
K. PARTANEN ◽  
T. JALAVA

An in vitro gas production technique was used to screen different organic acids (formic, propionic, lactic, citric, and fumaric acid), organic salts (calcium formate, potassium sorbate, and sodium benzoate), and inorganic phosphoric acid for their ability to modulate microbial fermentation in the digestive tract of piglets. For the incubation, 40 ml of culture medium (53% buffer, 45% frozen ileal digesta, and 2% fresh faeces) was dispensed in vessels containing 5 ml of buffer, 0.5 g of feed, and 20 ìl of liquid or 20 mg of solid acidifiers. Gas production was measured every 15 min during the 24 h incubation at 39°C, and a Gompertz bacterial growth model was applied to the gas production data. Formic acid was the only acid that reduced the maximum rate of gas production (ìm) compared to that in the control treatment (P < 0.05). The ìm was slower in vessels with formic acid than in those with calcium formate, citric acid, and potassium sorbate (P < 0.05) Calcium formate increased the ìm compared to the control treatment (P < 0.05). The maximum volume of gas produced and the lag time did not differ between different acidifiers (P > 0.05). When investigating formic-acid-based mixtures that contained 1–5% of potassium sorbate and/or sodium benzoate, the estimated parameters for the Gompertz growth model did not differ from those for treatments with plain formic acid (P > 0.05). However, concentrations of total volatile fatty acids, acetic acid, propionic acid, and n-butyric acid were reduced by all the mixtures (P < 0.05), but not by plain formic acid (P > 0.05). In conclusion, organic acids and salts were found to differ in their ability to modulate microbial fermentation in the digestive tract of piglets. Mixing formic acid with potassium sorbate or sodium benzoate changed fermentation patterns, and the possibility to use them to enhance the antimicrobial effect of formic acid should be investigated further in vivo.;


2015 ◽  
Vol 6 (12) ◽  
pp. 3737-3745 ◽  
Author(s):  
Cynthia Helou ◽  
Sylvain Denis ◽  
Madeleine Spatz ◽  
David Marier ◽  
Véronique Rame ◽  
...  

Bread melanoidins are partially degraded in the small intestine and induce a dramatic decrease of enterobacteria during batch fermentation.


Development ◽  
1981 ◽  
Vol 62 (1) ◽  
pp. 277-289
Author(s):  
Tohru Masui

To reveal differentiation potency of yolk-sac endoderm, this tissue from quail embryos was cultured alone or in association with digestive-tract mesenchymes of chick embryos. When yolk-sac endoderm was cultured alone in vitro, the endoderm of the area vitellina differentiated into the yolk-sac parenchyma, but the endoderm of the extraembryonic area pellucida (EEAP) failed to differentiate into yolk-sac parenchyma, and the endoderm of the area vasculosa became necrotic. When endoderm of the area vitellina was cultured in association with digestive-tract mesenchymes, all the endodermal cells developed into yolk-sac parenchymal cells after two days. Later, basophilic cells appeared among them, and differentiated into both mesenchymespecific epithelia and intestinal-type epithelium with a striated border, and villi were also formed. Goblet cells appeared in all types of recombinations. The endoderm of the EEAP cultured with digestive-tract mesenchymes gave similar results to that of the area vitellina. In contrast, endoderm of the area vasculosa, when cultured with digestive-tract mesenchymes,became necrotic. The present investigation demonstrated that the endoderms of the area vitellina and of the EEAP differ in self-differentiation potency, and that their developmental fates can be modified by the influence of digestive-tract mesenchymes. These endoderms can differentiate into the mesenchyme-specific epithelia, though they often differentiate also into the intestinal-type epithelium.


2015 ◽  
Vol 63 (27) ◽  
pp. 6142-6149 ◽  
Author(s):  
Daniel Menezes-Blackburn ◽  
Stefanie Gabler ◽  
Ralf Greiner

1985 ◽  
Vol 40 (3-4) ◽  
pp. 151-153 ◽  
Author(s):  
L. Gracza

Abstract Monoterpene derivatives with spasmolytic activity inhibited acetylcholinesterase (ACHE, EC 3.1.1.7) in a dose dependent manner in vitro. The median inhibitory concentrations ranges between 10-4 ᴍ and 10-2 ᴍ. A significance of our finding may by the possible explanation of effects of monoterpene derivatives seen in distony of digestive tract.


Sign in / Sign up

Export Citation Format

Share Document