scholarly journals Unified Principal S–N Equation for Friction Stir Welding of 5083 and 6061 Aluminum Alloys

2021 ◽  
Vol 34 (1) ◽  
Author(s):  
Xiangwei Li ◽  
Ji Fang ◽  
Xiaoli Guan

AbstractWith the popularization of friction stir welding (FSW), 5083-H321 and 6061-T6 aluminum alloy materials are widely used during the FSW process. In this study, the fatigue life of friction stir welding with two materials, i.e., 5083-H321 and 6061-T6 aluminum alloy, are studied. Fatigue tests were carried out on the base metal of these two materials as well as on the butt joints and overlapping FSW samples. The principle of the equivalent structural stress method is used to analyze the FSW test data of these two materials. The fatigue resistances of these two materials were compared and a unified principal S–N curve equation was fitted. Two key parameters of the unified principal S–N curve obtained by fitting, Cd is 4222.5, and h is 0.2693. A new method for an FSW fatigue life assessment was developed in this study and can be used to calculate the fatigue life of different welding forms with a single S–N curve. Two main fatigue tests of bending and tension were used to verify the unified principal S–N curve equation. The results show that the fatigue life calculated by the unified mean 50% master S–N curve parameters are the closest to the fatigue test results. The reliability, practicability, and generality of the master S–N curve fitting parameters were verified using the test data. The unified principal S–N curve acquired in this study can not only be used in aluminum alloy materials but can also be applied to other materials.

2013 ◽  
Author(s):  
Jürgen Schreiber ◽  
Ulana Cikalova ◽  
Susanne Hillmann ◽  
Norbert Meyendorf ◽  
Jochen Hoffmann

Materials ◽  
2020 ◽  
Vol 13 (2) ◽  
pp. 423 ◽  
Author(s):  
Michał Böhm ◽  
Mateusz Kowalski ◽  
Adam Niesłony

The paper presents experimental static and fatigue tests results under random loading conditions for the bending of 0H18N9 steel. The experimental results were used in performing calculations, according to the theoretical assumptions of the spectral method of fatigue life assessment, including elastoplastic deformations. The presented solution extends the use of the spectral method for material fatigue life assessment, in terms of loading conditions, above Hooke’s law theorem. The work includes computational verification of the proposal to extend the applicability of the spectral method of determining fatigue life for the range of elastoplastic deformations. One of the aims of the proposed modification was to supplement the stress amplitudes used to calculate the probability density function of the power spectral density of the signal with correction, due to the plastic deformation and its use for notched elements. The authors have tested the method using four of the most popular probability density functions used in commercial software. The obtained results of comparisons between the experimental and calculation results show that the proposed algorithm, tested using the Dirlik, Benasciutti–Tovo, Lalanne, and Zhao–Baker models, does not overestimate fatigue life, which means that the calculations are on the safe side. The obtained results prove that the elastoplastic deformations can be applied within the frequency domain for fatigue life calculations.


Author(s):  
Jorge Silva ◽  
Hossein Ghaednia ◽  
Sreekanta Das

Pipeline is the common mode for transporting oil, gas, and various petroleum products. Aging and corrosive environment may lead to formation of various defects such as crack, dent, gouge, and corrosion. The performance evaluation of field pipelines with crack defect is important. Accurate assessment of crack depth and remaining fatigue life of pipelines with crack defect is vital for pipeline’s structural integrity, inspection interval, management, and maintenance. An experimental based research work was completed at the University of Windsor for developing a semi-empirical model for estimating the remaining fatigue life of oil and gas pipes when a longitudinal crack defect has formed. A statistical approach in conjunction with fracture mechanics was used to develop this model. Statistical analysis was undertaken on CT specimen data to develop this fatigue life assessment model. Finite element method was used for determining the stress intensity factor. The fatigue life assessment model was then validated using full-scale fatigue test data obtained from 762 mm (30 inch) diameter X65 pipe. This paper discusses the test specimens and test data obtained from this study. Development and validation of the fatigue life assessment model is also presented in this paper.


1985 ◽  
Vol 107 (3) ◽  
pp. 214-220 ◽  
Author(s):  
T. Shimokawa ◽  
Y. Hamaguchi

The objective of this study is to identify the most closely related variable to the distribution of fatigue life in unnotched and three kinds of notched 2024-T4 aluminum alloy specimens. Carefully designed fatigue tests under a constant temperature and humidity condition provided fatigue life distributions over a wide range of stress amplitude. This study used about 1000 specimens. On the basis of the test results, the dependence of the scatter in fatigue life on notch configuration, the period to crack initiation, the level of stress amplitude, the median fatigue life, and the slope of the median S-N curve is investigated, and the relationship between the distributional form of fatigue life and the shape of the median S-N curve is discussed. It is concluded that the slope and shape of the median S-N curve in the vicinity of the test stress level are closely related to the scatter and distributional form of fatigue life respectively. This is common to the unnotched and three kinds of notched specimens. A variability hypothesis to correlate the median S-N curve with fatigue life distributions is examined.


Materials ◽  
2019 ◽  
Vol 12 (21) ◽  
pp. 3510 ◽  
Author(s):  
Adirek Baisukhan ◽  
Wasawat Nakkiew

The aim of this research is to investigate the sequence of processes for improving the welded surface integrity of AA7075-T651 aluminum alloy joined by friction stir welding (FSW). The improvement processes that will be investigated herein include mechanical surface improvement with deep rolling (DR) and post-weld heat treatment (PWHT). Therefore, this study investigated welded surface integrity, which comprises residual stress, microhardness, surface roughness, microstructure, and fatigue life (screening). The experiment consists of three sets of combinations. In the first set, only FSW was applied; in the second set, FSW was applied, followed by DR, and then PWHT processes (FSW-DR-PWHT); and in the last set, FSW was applied, followed by PWHT, and then DR processes (FSW-PWHT-DR). Fatigue testing was carried out by undertaking a four-point bending test using a bending stress of approximately 300 MPa with a test frequency of 2.5 Hz at room temperature and stress ratio R = 0. The study found that residual stress plays an important role in the fatigue life. Finally, the fatigue test showed that FSW workpieces subject to the PWHT process followed by the DR process (FSW-PWHT-DR) had the highest fatigue life, with an increase of 239% when compared with unprocessed FSW workpieces.


Author(s):  
Fre´de´ric Demanze ◽  
Didier Hanonge ◽  
Alain Chalumeau ◽  
Olivier Leclerc

Following some experiences of bending stiffeners fatigue failures during full scale tests performed at Flexi France on flexible pipe and stiffener assemblies, Technip decided to launch in 1999 a major research program on fatigue life analysis of bending stiffeners made of Polyurethane material. This fatigue life assessment is now systematically performed by Technip for all new design of flexible riser bending stiffeners. This totally innovative method comprises a number of features as follows: Firstly fatigue behaviour of polyurethane material is described. The theoretical background, based on effective strain intensity factor, is detailed, together with experimental results on laboratory notched samples, solicited under strain control for various strain ratios, to obtain fatigue data. These fatigue data are well fitted by a power law defining the total number of cycles at break as a function of the effective strain intensity factor. The notion of fatigue threshold, below which no propagation is observed, is also demonstrated. Secondly the design used by Technip for its bending stiffeners, and most of all the critical areas regarding fatigue for these massive polyurethane structures are presented. Thirdly the methodology for fatigue life assessment of bending stiffeners in the critical areas defined above is discussed. Calibration of the strain calculation principle is presented versus finite element analysis. Based on all fatigue test results, the size of the equivalent notch to be considered at design stage, in the same critical areas, is discussed. Finally, a comprehensive calibration of the methodology according to full and middle scale test results is presented. The present paper is therefore a step forward in the knowledge of fatigue behaviour of massive polyurethane bending stiffener structures, which are critical items for flexible risers integrity, and widely used in the offshore industry. The confidence in bending stiffeners reliability is greatly enhanced by the introduction of this innovative methodology developed by Technip.


Author(s):  
Esakki Muthu Shanmugam ◽  
Raghu V. Prakash ◽  
Sakthivel Ammaiappan

The fatigue life of the titanium alloy centrifugal impeller is estimated based on strain life method. a) Equivalent Strain Method and b) Smith Watson Topper Method are used. The probabilistic analysis of fatigue life is carried out by Weibull distribution method. The fatigue life of the impeller is assessed through cyclic spin test. The results are compared. The Equivalent Strain Method is found non conservative. The average fatigue life of the impeller is estimated as 12000 cycles by SWT method, which is found more closer to test results. The reliability improvement from 95% to 99% reduces the fatigue life around 18%.


Sign in / Sign up

Export Citation Format

Share Document