scholarly journals Optimization Transmission Efficiency with Driver Intention for Automotive Continuously Variable Transmission under Slip Mode

2021 ◽  
Vol 34 (1) ◽  
Author(s):  
Ling Han ◽  
Hui Zhang ◽  
Ruoyu Fang ◽  
Hongxiang Liu

AbstractThis study proposes and experimentally validates an optimal integrated system to control the automotive continuously variable transmission (CVT) by Model Predictive Control (MPC) to achieve its expected transmission efficiency range. The control system framework consists of top and bottom layers. In the top layer, a driving intention recognition system is designed on the basis of fuzzy control strategy to determine the relationship between the driver intention and CVT target ratio at the corresponding time. In the bottom layer, a new slip state dynamic equation is obtained considering slip characteristics and its related constraints, and a clamping force bench is established. Innovatively, a joint controller based on model predictive control (MPC) is designed taking internal combustion engine torque and slip between the metal belt and pulley as optimization dual targets. A cycle is attained by solving the optimization target to achieve optimum engine torque and the input slip in real-time. Moreover, the new controller provides good robustness. Finally, performance is tested by actual CVT vehicles. Results show that compared with traditional control, the proposed control improves vehicle transmission efficiency by approximately 9.12%–9.35% with high accuracy.

2020 ◽  
Author(s):  
Ling Han ◽  
Hui Zhang ◽  
Ruoyu Fang ◽  
Hongxiang Liu

Abstract This study proposes and experimentally validates an optimal integrated system to control the automotive continuously variable transmission (CVT) to achieve its expected transmission efficiency range. The control system framework consists of top and bottom layers. In the top layer, a driving intention recognition system is designed on the basis of fuzzy control strategy to determine the relationship between the driver intention and CVT target ratio at the corresponding time. In the bottom layer, a new slip state dynamic equation is obtained considering slip characteristics and its related constraints, and a clamping force bench is established. Innovatively, a joint controller based on model predictive control (MPC) is designed taking internal combustion engine torque and slip between the metal belt and pulley as optimization dual targets . A cycle is attained by solving the optimization target to achieve optimum engine torque and the input slip in real-time . Moreover, the new controller provides good robustness. Finally, performance is tested by actual CVT vehicles. Results show that compared with traditional control, the proposed control improves vehicle transmission efficiency by approximately 9.12%–9.35% with high accuracy.


2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
Lanchun Zhang ◽  
Zhongwei Zhu ◽  
Bin Huang ◽  
Tianbo Wang

In order to improve the transmission efficiency and carrying capacity of conventional single-belt continuously variable transmission (CVT), one new type of dual-belt CVT is proposed in this paper. Under the situation that this new dual-belt CVT should be switched between single- and dual-belt modes frequently according to driver’s intention and road conditions, so five objective evaluation indexes of mode switching quality for the dual-belt CVT are proposed, considering the aspects of vehicle power, comfort, and transmission durability comprehensively. Then, the objective evaluation model of mode switching quality is established by the BP neural network optimized by the genetic algorithm. It is found that the prediction results are consistent with the subjective evaluation. After analyzing the influence of the selected five evaluation indexes on the prediction results, it is obvious that these five evaluation indexes of mode switching quality for dual-belt CVT are reasonable.


Author(s):  
Muataz Abotabik ◽  
Richard T. Meyer

Major interests in the automotive industry include the use of alternative fuels and reduced fuel usage to address fuel supply security concerns and regulatory requirements. The majority of previous internal combustion engine (ICE) control strategies consider only the First Law of Thermodynamics (FLT). However, FLT is not able to distinguish losses in work potential due to irreversibilities, e.g., up to 25% of fuel exergy may be lost to irreversibilities. To account for these losses, the Second Law of Thermodynamics (SLT) is applicable. The SLT is used to identify the quality of an energy source via availability since not all the energy in a particular energy source is available to produce work; therefore optimal control that includes availability may be another path toward reduced fuel use. Herein, Model Predictive Control (MPC) is developed for both FLT and SLT approaches where fuel consumption is minimized in the former and availability destruction in the latter. Additionally, both include minimization of load tracking error. The controls are evaluated in the simulation of a single cylinder naturally aspirated compression ignition engine that is fueled with either 20% biodiesel and 80% diesel blend or diesel only. Control simulations at a constant engine speed and changing load profile show that the SLT approach results in higher SLT efficiency, reduced specific fuel consumption, and decreased NOx emissions. Further, compared to use of diesel only, use of the biodiesel blend resulted in less SLT efficiency, higher specific fuel consumption, and lower NOx emissions.


2020 ◽  
Vol 2020 ◽  
pp. 1-14
Author(s):  
Junyan Wang ◽  
Changgao Xia ◽  
Xin Fan ◽  
Junyu Cai

This paper proposes a new transmission scheme of hydromechanical continuously variable transmission (HMCVT) for tractors. The HMCVT has 4 working ranges in each of the front and rear directions. The speed characteristic and the torque characteristic of HMCVT are theoretically derived. On the basis of HMCVT power flow direction, the Крейнeс formula is used to calculate the transmission efficiency. Then, the image analysis method is used to study the influence of parameters on the transmission efficiency of HMCVT, and the main influencing factors are found. The results of theoretical derivation demonstrate that, by coordinating control of the HST displacement ratio and the engagement conditions of shifting clutches, the stepless speed regulation of HMCVT at the tractor speed of 0–50 km/h can be realized. The proposed HMCVT has the ability to continuously transmit and change torque over all working ranges. The overall transmission efficiency of HMCVT is at a high level. To verify the theoretical derivation, Amesim simulation software is used for the modeling and simulation of HMCVT. The simulation results are consistent with the theoretical analysis results. Therefore, the HMCVT proposed in this paper has the advantages of compact structure and high transmission efficiency, and it is suitable for matching tractors.


2009 ◽  
Vol 628-629 ◽  
pp. 167-172
Author(s):  
L.Y. Xu ◽  
Zhi Li Zhou ◽  
M.Z. Zhang ◽  
Y. Niu

In this paper, to improve the transmission ratio discontinuity problem during the gear shift process in the multi-gear fixed step ratio transmission of the tractors, a hydro-mechanical continuously variable transmission (HMCVT) for tractors is developed, which is composed of a single planetary gear differential train, a hydraulic transmission system consisted of the variable displacement pump (PV) and the fixed displacement motor (MF) and a multi-gear fixed step ratio transmission. Its stepless-speed-regulating characteristic, smooth range shifting condition and transmission efficiency are analyzed. The analytical results show that the tractors assembled with HMCVT can gain wide speed range and high transmission efficiency. There are eight high efficiency pure mechanical gears in the whole speed range, which is benefit to improve power and economic capabilities of vehicles.


2011 ◽  
Vol 317-319 ◽  
pp. 529-532
Author(s):  
Kei Lin Kuo

Compared to conventional transmission layouts, Active continuously variable transmission (CVT) provides smoother gear shifting and gear ratio in smaller increments, and is, therefore, more accommodating the needs of both the driver and passengers. A few notable improvements are enhanced passenger comfort, higher transmission efficiency, and improved acceleration. Incorporating all of the above qualities has become a major developmental focus for the automotive industry, and the potential for improvement warrants further investigation. A CVT controls the gear ratio by changing the diameters of the primary (input) and the secondary (output) pulleys by adjusting the hydraulic pressure applied to each using valves. Hydraulic pressure in the channel is developed using a basic pump connected to the input shaft. Excess pressure produced at higher speed is wasted. This study aims to minimize this hydraulic pressure without affecting the transmission’s performance, in order to conserve energy. A user interface was set up and the CVT’s torque converter was modified such that the inner and outer shafts could be operated independently, allowing for full control of hydraulic pressure .This experiment successfully achieved, via a custom LabVIEW program, its goal of controlling the gear ratio between the primary and secondary pulleys whilst operating at lower pressures to those specified by the manufacturer. This proves that it is possible to fully control the CVT whilst operating at a reduced hydraulic pressure.


2020 ◽  
Author(s):  
Chao Li ◽  
Xiuquan Cao ◽  
Qing-tao Li

Abstract In the existing traction continuously variable transmission (CVT), half toroidal CVT (HT-CVT) is considered to have a better traction performance. However, the HT-CVT has the spin losses due to its structural limitations, which significantly influences the traction efficiency. In this paper, the kinematic qualities and contact models of a novel zero-spin rolling conical CVT (RC-CVT) are studied, and then the rollers and conical disks are compactly designed through the proposed design principles. Subsequently, the transmission efficiency is investigated by using a detailed numerical model and compared with HT-CVT. Based on these computational models and parameters, the practical spin ratio, spin momentum and traction efficiency of RC-CVT are calculated and compared with HT-CVT. The results show that the practical spin ratio and spin momentum of RC-CVT are much smaller than that of HT-CVT, and the efficiency on fixed transmission ratio is consequently higher than that of HT-CVT.


Sign in / Sign up

Export Citation Format

Share Document