scholarly journals IL-17 crosses the blood–brain barrier to trigger neuroinflammation: a novel mechanism in nitroglycerin-induced chronic migraine

2022 ◽  
Vol 23 (1) ◽  
Author(s):  
Hao Chen ◽  
Xueqian Tang ◽  
Jin Li ◽  
Bangyan Hu ◽  
Wenqin Yang ◽  
...  

Abstract Background Chronic migraine places a disabling burden on patients, which is extensively modeled by the nitroglycerin (NTG)-treated animal model. Although the NF-κB pathway is involved in an increase in CGRP levels and activation of the trigeminal system in the NTG model, the relationship between NTG and neuroinflammation remains unclear. This study aimed to optimize a chronic NTG rat model with hyperalgesia and the ethological capacity for estimating migraine therapies and to further explore the underlying mechanism of NTG-induced migraine. Methods Rats were administered different doses of NTG s.c. daily or every 2 d; 30 min and 2 h later, the mechanical threshold was tested. After 9 d, the rats were injected with EB or Cy5.5 for the permeability assay. The other animals were sacrificed, and then, brainstem and caudal trigeminal ganglion were removed to test CGRP, c-Fos and NOS activity; Cytokines levels in the tissue and serum were measured by ELISA; and NF-κB pathway and blood–brain barrier (BBB)-related indicators were analyzed using western blotting. Immunohistochemistry was performed to observe microglial polarization and IL-17A+ T cell migration in the medulla oblongata. Results NTG (10 mg/kg, s.c., every 2 d for a total of 5 injections) was the optimal condition, resulting in progressive hyperalgesia and migraine behavior. TNC neuroinflammation with increases in cytokines, CGRP and c-Fos and activation of the NF-κB pathway was observed, and these changes were alleviated by ibuprofen. Furthermore, NTG administration increased BBB permeability by altering the levels functional proteins (RAGE, LRP1, AQP4 and MFSD2A) and structural proteins (ZO-1, Occludin and VE-cadherin-2) to increase peripheral IL-17A permeation into the medulla oblongata, activating microglia and neuroinflammation, and eventually causing hyperalgesia and migraine attack. Conclusions This study confirmed that NTG (10 mg/kg, s.c., every 2 d for a total of 5 injections) was the optimal condition to provoke migraine, resulting in mechanical hyperalgesia and observable migraine-like behavior. Furthermore, IL-17A crossed the blood–brain barrier into the medulla oblongata, triggering TNC activation through microglia-mediated neuroinflammation. This process was a novel mechanism in NTG-induced chronic migraine, suggesting that IL-17A might be a novel target in the treatment of migraine.

2010 ◽  
Vol 30 (9) ◽  
pp. 1593-1597 ◽  
Author(s):  
Brian T Hawkins ◽  
Robert R Rigor ◽  
David S Miller

Blood–brain barrier (BBB) P-glycoprotein activity is rapidly reduced by vascular endothelial growth factor (VEGF) acting via Src and by tumor necrosis factor-α acting via protein kinase C (PKC)β1. To probe underlying mechanism(s), we developed an in vivo, immunoblot-based proteinase K (PK) protection assay to assess the changes in the P-glycoprotein content of the BBB's luminal membrane. Infusion of PK into the brain vasculature selectively cleaved luminal membrane P-glycoprotein, leaving intracellular proteins intact. Intracerebroventricular injection of VEGF partially protected P-glycoprotein from proteolytic cleavage, consistent with transporter internalization. Activation of PKCβ1 did not protect P-glycoprotein. Thus, VEGF and PKCβ1 reduce P-glycoprotein activity by distinct mechanisms.


2019 ◽  
Author(s):  
Zhengchen Su ◽  
Qing Chang ◽  
Aleksandra Drelich ◽  
Thomas Shelite ◽  
Barbara Judy ◽  
...  

AbstractIntracerebral microhemorrhages (CMHs) are small foci of hemorrhages in the cerebrum. Acute infections induced by some intracellular pathogens, including rickettsia, can result in CMHs. Annexin a2 (ANXA2) has been documented to play a functional role during intracellular bacterial adhesion. Here we report that ANXA2-knockout (KO) mice are more susceptible to CMHs in response to rickettsia and Ebola virus infections, suggesting an essential role of ANXA2 in protecting vascular integrity during these intracellular pathogen infections. Proteomic analysis via mass spectrometry of whole brain lysates and brain-derived endosomes from ANXA2-KO and wild-type (WT) mice post-infection with R. australis revealed that a variety of significant proteins were differentially expressed, and the follow-up function enrichment analysis had identified several relevant cell-cell junction functions. Immunohistology study confirmed that both infected WT and infected ANXA2-KO mice were subjected to adherens junctional protein (VE-cadherin) damages. However, key blood-brain barrier (BBB) components, tight junctional proteins ZO-1 and occludin, were disorganized in the brains from R. australis-infected ANXA2-KO mice, but not those of infected WT mice. Similar ANXA2-KO dependent CMHs and fragments of ZO-1 and occludin were also observed in Ebola virus-infected ANXA2-KO mice, but not found in infected WT mice. Overall, our study revealed a novel role of ANXA2 in the formation of CMHs during R. australis and Ebola virus infections; and the underlying mechanism is relevant to the role of ANXA2-regulated tight junctions and its role in stabilizing the BBB in these deadly infections.Author SummaryTraditionally, spontaneous intracerebral microhemorrhages (CMHs) were defined as small foci of intracerebral hemorrhages. Such atraumatic CMHs are due to the rupture of a weak blood vessel wall. Infections complicating cerebrovascular accidents have been extensively investigated. However, the role of CMHs complicating infections, in particularly acute systemic infections, has been poorly explored. Population-based retrospective cohort studies suggest there are potentially more undiscovered cases of CMHs accompanying acute systemic infections. Given both the lack of an animal model and cellular/molecular pathophysiology of CMHs following acute systemic infections, there is an urgent need to increase our comprehensive understanding of acute infection-induced CMHs. Overall, our study revealed a novel role of annexin a2 (ANXA2) in the formation of CMHs during R. australis and Ebola virus infections; and the underlying mechanism is relevant to the role of ANXA2-regulated endothelial tight junctions and its role in stabilizing the blood-brain barrier in these deadly infections.


1995 ◽  
Author(s):  
Thomas P. Davis ◽  
Thomas J. Abbruscato ◽  
Elizabeth Brownson ◽  
Victor J. Hruby

Sign in / Sign up

Export Citation Format

Share Document