scholarly journals Quantum Entanglement in Double Quantum Systems and Jaynes-Cummings Model

2017 ◽  
Vol 12 (1) ◽  
Author(s):  
Paweł Jakubczyk ◽  
Klaudiusz Majchrowski ◽  
Igor Tralle
Author(s):  
Roumen Tsekov

In this paper, the Schrödinger equation is solved for many free particles and their quantum entanglement is studied via correlation analysis. Converting the Schrödinger equation in the Madelung hydrodynamic-like form, the quantum mechanics is extended to open quantum systems by adding Ohmic friction forces. The dissipative evolution confirms the correlation decay over time, but a new integral of motion is discovered, being appropriate for storing everlasting quantum information.


Author(s):  
Jia-Bin Zhang ◽  
Tao Li ◽  
Zhi-Xi Wang

Monogamy relations of entanglement play an important role in quantum systems, however, most of them are given in summation form. In this paper, we investigate the product-form monogamy relations of multipartite entanglement in terms of the [Formula: see text]th power of concurrence and negativity. Compared with the existing monogamy relations, the product-form monogamy relations of multi-body quantum entanglement have a stricter lower bound.


2005 ◽  
Vol 19 (19) ◽  
pp. 3063-3139 ◽  
Author(s):  
FABIO BENATTI ◽  
ROBERTO FLOREANINI

We review the standard treatment of open quantum systems in relation to quantum entanglement, analyzing, in particular, the behavior of bipartite systems immersed in the same environment. We first focus upon the notion of complete positivity, a physically motivated algebraic constraint on the quantum dynamics, in relation to quantum entanglement, i.e. the existence of statistical correlations which can not be accounted for by classical probability. We then study the entanglement power of heat baths versus their decohering properties, a topic of increasing importance in the framework of the fast developing fields of quantum information, communication and computation. The presentation is self contained and, through several examples, it offers a detailed survey of the physics and of the most relevant and used techniques relative to both quantum open system dynamics and quantum entanglement.


Entropy ◽  
2019 ◽  
Vol 21 (6) ◽  
pp. 618 ◽  
Author(s):  
Kevin M. Short ◽  
Matthew A. Morena

We examine the quantum-classical correspondence from a classical perspective by discussing the potential for chaotic systems to support behaviors normally associated with quantum mechanical systems. Our main analytical tool is a chaotic system’s set of cupolets, which are highly-accurate stabilizations of its unstable periodic orbits. Our discussion is motivated by the bound or entangled states that we have recently detected between interacting chaotic systems, wherein pairs of cupolets are induced into a state of mutually-sustaining stabilization that can be maintained without external controls. This state is known as chaotic entanglement as it has been shown to exhibit several properties consistent with quantum entanglement. For instance, should the interaction be disturbed, the chaotic entanglement would then be broken. In this paper, we further describe chaotic entanglement and go on to address the capacity for chaotic systems to exhibit other characteristics that are conventionally associated with quantum mechanics, namely analogs to wave function collapse, various entropy definitions, the superposition of states, and the measurement problem. In doing so, we argue that these characteristics need not be regarded exclusively as quantum mechanical. We also discuss several characteristics of quantum systems that are not fully compatible with chaotic entanglement and that make quantum entanglement unique.


2016 ◽  
Vol 26 (03) ◽  
pp. 1650052
Author(s):  
Sijo K. Joseph ◽  
Miguel A. F. Sanjuán

Quantum entanglement in the Hénon–Heiles system is analyzed using the squeezed coherent state. Enhancement of quantum entanglement via squeezing is explored in connection with chaotic and regular dynamics of the system. It is found that the entanglement enhancement via squeezing is implicitly linked to the local structure of the classical phase-space and it shows a clear quantum-classical correspondence. In particular, the entanglement enhancement via squeezing is found to be negligible for a highly chaotic orbit compared to the regular and weakly chaotic orbits, and shows a clear correspondence to the degree of chaos present in the classical initial condition. We believe that these results might be useful to develop efficient strategies to enhance entanglement in quantum systems.


Science ◽  
2011 ◽  
Vol 333 (6047) ◽  
pp. 1269-1272 ◽  
Author(s):  
K. C. Nowack ◽  
M. Shafiei ◽  
M. Laforest ◽  
G. E. D. K. Prawiroatmodjo ◽  
L. R. Schreiber ◽  
...  

Measurement of coupled quantum systems plays a central role in quantum information processing. We have realized independent single-shot read-out of two electron spins in a double quantum dot. The read-out method is all-electrical, cross-talk between the two measurements is negligible, and read-out fidelities are ~86% on average. This allows us to directly probe the anticorrelations between two spins prepared in a singlet state and to demonstrate the operation of the two-qubit exchange gate on a complete set of basis states. The results provide a possible route to the realization and efficient characterization of multiqubit quantum circuits based on single quantum dot spins.


Sign in / Sign up

Export Citation Format

Share Document