scholarly journals Strategies and Structure Feature of the Aboveground and Belowground Microbial Community Respond to Drought in Wild Rice (Oryza longistaminata)

Rice ◽  
2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Jian Xie ◽  
Xiaoqing Wang ◽  
Jiawang Xu ◽  
Hongwei Xie ◽  
Yaohui Cai ◽  
...  

Abstract Background Drought is global environmental stress that limits crop yields. Plant-associated microbiomes play a crucial role in determining plant fitness in response to drought, yet the fundamental mechanisms for maintaining microbial community stability under drought disturbances in wild rice are poorly understood. We make explicit comparisons of leaf, stem, root and rhizosphere microbiomes from the drought-tolerant wild rice (Oryza longistaminata) in response to drought stress. Results We find that the response of the wild rice microbiome to drought was divided into aboveground–underground patterns. Drought reduced the leaf and stem microbial community diversity and networks stability, but not that of the roots and rhizospheres. Contrary to the aboveground microbial networks, the drought-negative response taxa exhibited much closer interconnections than the drought-positive response taxa and were the dominant network hubs of belowground co-occurrence networks, which may contribute to the stability of the belowground network. Notably, drought induces enrichment of Actinobacteria in belowground compartments, but not the aboveground compartment. Additionally, the rhizosphere microbiome exhibited a higher proportion of generalists and broader habitat niche breadth than the microbiome at other compartments, and drought enhanced the proportion of specialists in all compartments. Null model analysis revealed that both the aboveground and belowground-community were governed primarily by the stochastic assembly process, moreover, drought decreased ‘dispersal limitation’, and enhanced ‘drift’. Conclusions Our results provide new insight into the different strategies and assembly mechanisms of the above and belowground microbial community in response to drought, including enrichment of taxonomic groups, and highlight the important role of the stochastic assembly process in shaping microbial community under drought stress.

2020 ◽  
Author(s):  
xia ding ◽  
Xiaojue Peng ◽  
Zhichao Chen ◽  
Yingjie Li ◽  
Lihui Mao ◽  
...  

Abstract Background Drought is a global environmental stress that limits crop yields. Microbial communities control many biogeochemical processes, and a predictive understanding of how crop microbial communities assemble in response to drought stress is central to addressing the challenges caused by drought. Little is known about the microbiome assembly processes in rice-ecosystems, particularly with regard to their environmental adaptation. Wild rice may serve as a source of superior drought tolerance candidate for rice breeding. There is an urgent need to explore wild rice resistance mechanisms to drought stress. Here, we evaluated the effect of drought stress on the microbial community recruitment and assembly in the endosphere (leaf, stem, and root) and rhizosphere of Oryza longistaminata. Results Species replacement was the dominant process shaping microbial community composition under drought stress. O. longistaminata recruited the phyla Actinobacteria and Fusobacteria, the genus Streptomyces, and phototrophic prokaryotes to improve its fitness. The host exerted strong effects on microbiome assembly, and the responses of the microbial community structure to the drought environment showed above- and belowground patterns. Drought reduced taxonomic α-diversity and destabilized co-occurrence network properties in the leaves and stems, but not in the roots and rhizosphere. Drought promoted the restructuring and strengthening of belowground network links to more strongly interconnect network properties. The drought response of the microbiome was phylogenetically conserved. Stochastic (neutral) processes acted on microbial community reassembly in response to drought stress across all four compartments. Conclusions Our results provide new insight into the mechanisms through which drought alters microbial community assembly in drought-tolerant wild rice and reveal a potential strategy for manipulating plant microbiomes to improve crop fitness.


2021 ◽  
Author(s):  
Emily K. Bechtold ◽  
Stephanie Ryan ◽  
Sarah E. Moughan ◽  
Ravi Ranjan ◽  
Klaus Nüsslein

Grasslands represent a critical ecosystem important for global food production, soil carbon storage, and water regulation. Current intensification and expansion practices add to the degradation of grasslands and dramatically increase greenhouse gas emissions and pollution. Thus, new ways to sustain and improve their productivity are needed. Research efforts focus on the plant-leaf microbiome, or phyllosphere, because its microbial members impact ecosystem function by influencing pathogen resistance, plant hormone production, and nutrient availability through processes including nitrogen fixation. However, little is known about grassland phyllospheres and their response to environmental stress. In this study, globally dominant temperate and tropical forage grass species were grown in a greenhouse under current climate conditions and drought conditions that mimic future climate predictions to understand if (i) plant host taxa influence microbial community assembly, (ii) microbial communities respond to drought stress, and (iii) phyllosphere community changes correlate to changes in plant host traits and stress-response strategies. Community analysis using high resolution sequencing revealed Gammaproteobacteria as the dominant bacterial class, which increased under severe drought stress on both temperate and tropical grasses while overall bacterial community diversity declined. Bacterial community diversity, structure, and response to drought were significantly different between grass species. This community dependence on plant host species correlated with differences in grass species traits, which became more defined under drought stress conditions, suggesting symbiotic evolutionary relationships between plant hosts and their associated microbial community. Further understanding these strategies and the functions microbes provide to plants will help us utilize microbes to promote agricultural and ecosystem productivity in the future.


2018 ◽  
Author(s):  
Ezequiel Santillan ◽  
Hari Seshan ◽  
Florentin Constancias ◽  
Daniela I. Drautz-Moses ◽  
Stefan Wuertz

AbstractDisturbance is known to affect ecosystem structure, but predicting its outcomes remains elusive. Similarly, community diversity is believed to relate to ecosystem functions, yet the underlying mechanisms are poorly understood. Here, we tested the effect of disturbance on the structure, diversity, and ecosystem function of complex microbial communities within an engineered system. We carried out a microcosm experiment where activated sludge bioreactors were subjected to a range of disturbances in the form of a toxic pollutant, tracking changes in ecosystem function. Microbial communities were assessed by combining distance-based methods, general linear multivariate models, α-diversity indices, and null model analyses on metagenomics and 16S rRNA gene amplicon data. A stronger temporal decrease in α-diversity at the extreme, undisturbed and press-disturbed, ends of the disturbance range led to a hump-backed pattern, with the highest diversity found at intermediate levels of disturbance. Undisturbed and press-disturbed levels displayed the highest community and functional similarity across replicates, suggesting deterministic processes were dominating. The opposite was observed amongst intermediately disturbed levels, indicating stronger stochastic assembly mechanisms. Tradeoffs were observed in community function between organic carbon removal and both nitrification and biomass productivity, as well as between diversity and these functions. Hence, not every ecosystem function was favoured by higher community diversity. Our results show that the assessment of changes in diversity, along with the underlying stochastic-niche assembly processes, is essential to understanding the impact of disturbance in complex microbial communities.ImportanceMicrobes drive the Earth’s biogeochemical cycles, yet how they respond to perturbations like anthropogenic pollutants is poorly understood. As human impact continues to increase worldwide, foreseeing how disturbances will affect microbial communities and the ecosystem services they provide is key for ecosystem management and conservation efforts. Employing laboratory-scale wastewater treatment bioreactors, this study shows that changes in community diversity accompany variations in the underlying deterministic-stochastic assembly mechanisms. Disturbances could promote stochastic community structuring, which despite harboring higher diversity could lead to variable overall function, possibly explaining why after similar perturbations the process outcome differs. A conceptual framework, termed the ‘intermediate stochasticity hypothesis’ is proposed to theoretically predict bacterial community shifts in diversity and ecosystem function, given a range of possible disturbance types, in a well-replicated time-series experiment. Our findings are relevant for managing complex microbial systems, which could display similar responses to disturbance, like oceans, soils or the human gut.


Author(s):  
Emily K. Bechtold ◽  
Stephanie Ryan ◽  
Sarah E. Moughan ◽  
Ravi Ranjan ◽  
Klaus Nüsslein

Grasslands represent a critical ecosystem important for global food production, soil carbon storage, and water regulation. Current intensification and expansion practices add to the degradation of grasslands and dramatically increase greenhouse gas emissions and pollution. Thus, new ways to sustain and improve their productivity are needed. Research efforts focus on the plant-leaf microbiome, or phyllosphere, because its microbial members impact ecosystem function by influencing pathogen resistance, plant hormone production, and nutrient availability through processes including nitrogen fixation. However, little is known about grassland phyllospheres and their response to environmental stress. In this study, globally dominant temperate and tropical forage grass species were grown in a greenhouse under current climate conditions and drought conditions that mimic future climate predictions to understand if (i) plant host taxa influence microbial community assembly, (ii) microbial communities respond to drought stress, and (iii) phyllosphere community changes correlate to changes in plant host traits and stress-response strategies. Community analysis using high resolution sequencing revealed Gammaproteobacteria as the dominant bacterial class, which increased under severe drought stress on both temperate and tropical grasses while overall bacterial community diversity declined. Bacterial community diversity, structure, and response to drought were significantly different between grass species. This community dependence on plant host species correlated with differences in grass species traits, which became more defined under drought stress conditions, suggesting symbiotic evolutionary relationships between plant hosts and their associated microbial community. Further understanding these strategies and the functions microbes provide to plants will help us utilize microbes to promote agricultural and ecosystem productivity in the future. IMPORTANCE Globally important grassland ecosystems are at risk of degradation due to poor management practices compounded by predicted increases in severity and duration of drought over the next century. Finding new ways to support grassland productivity is critical to maintaining their ecological and agricultural benefits. Discerning how grassland microbial communities change in response to climate stress will help us understand how plant-microbe relationships may be useful to sustainably support grasslands in the future. In this study, phyllosphere community diversity and composition was significantly altered under drought conditions. The significance of our research is demonstrating how severe climate stress reduces bacterial community diversity, which previously was directly associated with decreased plant productivity. These findings guide future questions about functional plant-microbe interactions under stress conditions, greatly enhancing our understanding of how bacteria can increase food security by promoting grassland growth and resilience.


PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e6962
Author(s):  
Xing Li ◽  
Tianming Li ◽  
Delong Meng ◽  
Tianbo Liu ◽  
Yongjun Liu ◽  
...  

Background The soil fungal community plays an important role in global carbon cycling and shows obvious seasonal variations, however, drivers, particularly stochastic drivers, of the seasonal variation in the fungal community have never been addressed in sufficient detail. Methods We investigated the soil fungal community variation between summer growing (SG) and winter fallow (WF) stage, through high throughput sequencing of internal transcribed spacer (ITS) amplicons. Subsequently, we assessed the contribution of different ecological processes to community assembly using null-model-based statistical framework. Results The results showed that the fungal community diversity decreased significantly after tobacco cropping in the SG stage and the composition showed a clear turnover between the WF and SG stages. The variation in community composition was largely attributable to the presence of a small portion of Dothideomycetes in the WF stage that dominated the soil fungal community in the SG stage. The organic matter, temperature, and water content were the main deterministic factors that regulated the fungal community; these factors explained 34.02% of the fungal community variation. Together with the result that the fungal community was mainly assembled by the dispersal process, our results suggested that the stochastic factors played important roles in driving the seasonal variation of fungal community. The dispersal limitation dominated the fungal community assembly during the WF stage when homogenizing dispersal was the main assembly process of the fungal community in the SG stage. Thus, we proposed that the dispersal processes are important drivers for seasonal variation of fungal community in tobacco planted soil.


AMB Express ◽  
2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Zhiyong Liu ◽  
Kai Dang ◽  
Cunzhi Li ◽  
Junhong Gao ◽  
Hong Wang ◽  
...  

Abstract Hexanitrohexaazaisowurtzitane (CL-20) is a compound with a polycyclic cage and an N-nitro group that has been shown to play an unfavorable role in environmental fate, biosafety, and physical health. The aim of this study was to isolate the microbial community and to identify a single microbial strain that can degrade CL-20 with desirable efficiency. Metagenomic sequencing methods were performed to investigate the dynamic changes in the composition of the community diversity. The most varied genus among the microbial community was Pseudomonas, which increased from 1.46% to 44.63% during the period of incubation (MC0–MC4). Furthermore, the new strain was isolated and identified from the activated sludge by bacterial morphological and 16s rRNA sequencing analyses. The CL-20 concentrations decreased by 75.21 μg/mL and 74.02 μg/mL in 48 h by MC4 and Pseudomonas sp. ZyL-01, respectively. Moreover, ZyL-01 could decompose 98% CL-20 of the real effluent in 14 day’s incubation with the glucose as carbon source. Finally, a draft genome sequence was obtained to predict possible degrading enzymes involved in the biodegradation of CL-20. Specifically, 330 genes that are involved in energy production and conversion were annotated by Gene Ontology functional enrichment analysis, and some of these candidates may encode enzymes that are responsible for CL-20 degradation. In summary, our studies indicate that microbes might be a valuable biological resource for the treatment of environmental contamination caused by CL-20 and that Pseudomonas sp. ZyL-01 might be a promising candidate for eradicating CL-20 to achieve a more biosafe environment and improve public health.


2021 ◽  
Vol 22 (15) ◽  
pp. 8266
Author(s):  
Minsu Kim ◽  
Chaewon Lee ◽  
Subin Hong ◽  
Song Lim Kim ◽  
Jeong-Ho Baek ◽  
...  

Drought is a main factor limiting crop yields. Modern agricultural technologies such as irrigation systems, ground mulching, and rainwater storage can prevent drought, but these are only temporary solutions. Understanding the physiological, biochemical, and molecular reactions of plants to drought stress is therefore urgent. The recent rapid development of genomics tools has led to an increasing interest in phenomics, i.e., the study of phenotypic plant traits. Among phenomic strategies, high-throughput phenotyping (HTP) is attracting increasing attention as a way to address the bottlenecks of genomic and phenomic studies. HTP provides researchers a non-destructive and non-invasive method yet accurate in analyzing large-scale phenotypic data. This review describes plant responses to drought stress and introduces HTP methods that can detect changes in plant phenotypes in response to drought.


Sign in / Sign up

Export Citation Format

Share Document