bacterial succession
Recently Published Documents


TOTAL DOCUMENTS

76
(FIVE YEARS 30)

H-INDEX

23
(FIVE YEARS 5)

2021 ◽  
Vol 10 (1) ◽  
pp. 65
Author(s):  
Daniela Rosado ◽  
Marcos Pérez-Losada ◽  
Manuel Aira ◽  
Jorge Domínguez

Vermicomposting is the process of organic waste degradation through interactions between earthworms and microbes. A variety of organic wastes can be vermicomposted, producing a nutrient-rich final product that can be used as a soil biofertilizer. Giving the prolific invasive nature of the Australian silver wattle Acacia dealbata Link in Europe, it is important to find alternatives for its sustainable use. However, optimization of vermicomposting needs further comprehension of the fundamental microbial processes. Here, we characterized bacterial succession during the vermicomposting of silver wattle during 56 days using the earthworm species Eisenia andrei. We observed significant differences in α- and β-diversity between fresh silver wattle (day 0) and days 14 and 28, while the bacterial community seemed more stable between days 28 and 56. Accordingly, during the first 28 days, a higher number of taxa experienced significant changes in relative abundance. A microbiome core composed of 10 amplicon sequence variants was identified during the vermicomposting of silver wattle (days 14 to 56). Finally, predicted functional profiles of genes involved in cellulose metabolism, nitrification, and salicylic acid also changed significantly during vermicomposting. This study, hence, provides detailed insights of the bacterial succession occurring during vermicomposting of the silver wattle and the characteristics of its final product as a sustainable plant biofertilizer.


2021 ◽  
Vol 126 ◽  
pp. 107625
Author(s):  
Haijun Yuan ◽  
Fanfan Meng ◽  
Masanobu Yamamoto ◽  
Xingqi Liu ◽  
Hailiang Dong ◽  
...  

Processes ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 900
Author(s):  
Chao Wang ◽  
Hongyan Han ◽  
Lin Sun ◽  
Na Na ◽  
Haiwen Xu ◽  
...  

Whole-plant corn silage is a predominant forage for livestock that is processed in Heilongjiang province (Daqing city and Longjiang county), Inner Mongolia Autonomous Region (Helin county and Tumet Left Banner) and Shanxi province (Taigu and Shanyin counties) of North China; it was sampled at 0, 5, 14, 45 and 90 days after ensiling. Bacterial community and fermentation quality were analysed. During fermentation, the pH was reduced to below 4.0, lactic acid increased to above 73 g/kg DM (p < 0.05) and Lactobacillus dominated the bacterial community and had a reducing abundance after 14 days. In the final silages, butyric acid was not detected, and the contents of acetic acid and ammonia nitrogen were below 35 g/kg DM and 100 g/kg total nitrogen, respectively. Compared with silages from Heilongjiang and Inner Mongolia, silages from Shanxi contained less Lactobacillus and more Leuconostoc (p < 0.05), and had a separating bacterial community from 14 to 90 days. Lactobacillus was negatively correlated with pH in all the silages (p < 0.05), and positively correlated with lactic and acetic acid in silages from Heilongjiang and Inner Mongolia (p < 0.05). The results show that the final silages had satisfactory fermentation quality. During the ensilage process, silages from Heilongjiang and Inner Mongolia had similar bacterial-succession patterns; the activity of Lactobacillus formed and maintained good fermentation quality in whole-plant corn silage.


2020 ◽  
pp. 1-5
Author(s):  
J Thomas Mc Clintock ◽  
◽  
Michael J Erquiaga ◽  
Mia R Fabbri ◽  
◽  
...  

Decomposition is a rapidly evolving process that is dependent on various environmental factors such as climate, temperature, insect activity, large vertebrate scavenging, and microbial activity. Although other factors such as body weight and time have been evaluated, microbial activity should be considered as another major component in the decomposition process. This study was designed to investigate the microbiome and potential bacterial succession using two different DNA extraction methods, classic microbiologic techniques and 16S ribosomal sequencing at the onset and end of decomposition. Differences were observed between the bacterial phyla found on Day 1 versus Day 6. Among the various phyla, several different bacterial species were observed such as Kurthia gibsonii, K. sibirica, Staphylococcus sciuri, S. lentus, and Serratia marcescens. An interesting change in the phyla present was observed for Day 6. None of the bacterial samples collected on any of the anatomical sites were identified in the phylum Firmicutes. In fact, most of the bacteria collected from the mouth, nose, and genitals were identified in the phyla Actinobacteria and Proteobacteria. Two different bacterial species, Myroides odoratus and Leucobacter aridicollis were present in the two phyla at Day 6 that were not observed at the onset of decomposition. Likewise, many of the bacterial species present at Day 1 were not observed in Day 6. The difference in bacterial diversity observed at the onset and end of decomposition suggest that a timeline or bacterial succession could be developed that could support post-mortem interval determinations


2020 ◽  
Author(s):  
Eleni Nikouli ◽  
Konstantinos Kormas ◽  
Yang Jin ◽  
Yngvar Olsen ◽  
Ingrid Bakke ◽  
...  

Abstract Backgound: The present study investigated the effect of different lipid source in the feed on the colonization and the bacterial succession in early life stages (fertilized eggs until 93 days post first feeding) of S. salar. The two diets used in this study, FD (fish oil based diet) and VD (vegetable oil based diet), were formulated to cover the fish nutritional requirements and except the lipid source the components were identical between them.Hindgut samples collected at 0, 35, 65 and 93 days post first feeding (dpff). Moreover, fertilized eggs, yolk sac larvae, rearing water and feed were also sampled in order to assess a possible contribution of their microbiota to the colonization of the gut. To analyze the composition of the bacterial communities, the Illumina MiSeq platform was used. Results: S. salar growth variables (mean wet weight and total length) did not differ significantly during the experiment (p> 0.05) across replicate tanks and between dietary treatments. The analysis of the 16S rDNA sequencing data revealed a total of 4548 unique OTUs, affiliated in 21 bacterial phyla. Proteobacteria, Firmicutes, Actinobacteria and Bacteroidetes were the dominant bacterial phyla. 13 OTUs were shared among all S. salar samples independent of life stage and diet treatment. Similarity percentages analysis (SIMPER) based on Bray–Curtis distance, showed that the average dissimilarity among the groups of the same life stages was 76.0%, whereas the average dissimilarity within groups of the same dietary treatment was 78.5% (FD) and 83.6% (VD). Conclusion: Feeding on either fish oil or vegetable oil-based diets, did not result in significant differences in the intestinal microbiota. The composition of gut microbiota did not differ significantly between the two dietary treatments, but changed with age, and each stage was characterized by different dominant bacteria. These OTUs are related to species that provide different functions and have been isolated from a variety of environments. Finally, this study revealed the occurrence of a core microbiota independent of the studied life stages and diet during the early life stages of Atlantic salmon.


Sign in / Sign up

Export Citation Format

Share Document