scholarly journals Association between ALS and retroviruses: evidence from bioinformatics analysis

2019 ◽  
Vol 20 (S24) ◽  
Author(s):  
Jon P. Klein ◽  
Zhifu Sun ◽  
Nathan P. Staff

Abstract Background Emerging evidence suggests retroviruses play a role in the pathophysiology of amyotrophic lateral sclerosis (ALS). Specifically, activation of ancient viral genes embedded in the human genome is theorized to lead to motor neuron degeneration. We explore whether connections exist between ALS and retroviruses through protein interaction networks (PIN) and pathway analysis, and consider the potential roles in drug target discovery. Protein database and pathway/network analytical software including Ingenuity Pathway BioProfiler, STRING, and CytoScape were utilized to identify overlapping protein interaction networks and extract core cluster (s) of retroviruses and ALS. Results Topological and statistical analysis of the ALS-PIN and retrovirus-PIN identified a shared, essential protein network and a core cluster with significant connections with both networks. The identified core cluster has three interleukin molecules IL10, Il-6 and IL-1B, a central apoptosis regulator TP53, and several major transcription regulators including MAPK1, ANXA5, SQSTM1, SREBF2, and FADD. Pathway enrichment analysis showed that this core cluster is associated with the glucocorticoid receptor singling and neuroinflammation signaling pathways. For confirmation purposes, we applied the same methodology to the West Nile and Polio virus, which demonstrated trivial connectivity with ALS, supporting the unique connection between ALS and retroviruses. Conclusions Bioinformatics analysis provides evidence to support pathological links between ALS and retroviral activation. The neuroinflammation and apoptotic regulation pathways are specifically implicated. The continuation and further analysis of large scale genome studies may prove useful in exploring genes important in retroviral activation and ALS, which may help discover new drug targets.

PeerJ ◽  
2015 ◽  
Vol 3 ◽  
pp. e1284 ◽  
Author(s):  
Maryam Abedi ◽  
Yousof Gheisari

In spite of huge efforts, chronic diseases remain an unresolved problem in medicine. Systems biology could assist to develop more efficient therapies through providing quantitative holistic sights to these complex disorders. In this study, we have re-analyzed a microarray dataset to identify critical signaling pathways related to diabetic nephropathy. GSE1009 dataset was downloaded from Gene Expression Omnibus database and the gene expression profile of glomeruli from diabetic nephropathy patients and those from healthy individuals were compared. The protein-protein interaction network for differentially expressed genes was constructed and enriched. In addition, topology of the network was analyzed to identify the genes with high centrality parameters and then pathway enrichment analysis was performed. We found 49 genes to be variably expressed between the two groups. The network of these genes had few interactions so it was enriched and a network with 137 nodes was constructed. Based on different parameters, 34 nodes were considered to have high centrality in this network. Pathway enrichment analysis with these central genes identified 62 inter-connected signaling pathways related to diabetic nephropathy. Interestingly, the central nodes were more informative for pathway enrichment analysis compared to all network nodes and also 49 differentially expressed genes. In conclusion, we here show that central nodes in protein interaction networks tend to be present in pathways that co-occur in a biological state. Also, this study suggests a computational method for inferring underlying mechanisms of complex disorders from raw high-throughput data.


2020 ◽  
Author(s):  
Diogo Borges Lima ◽  
Ying Zhu ◽  
Fan Liu

ABSTRACTSoftware tools that allow visualization and analysis of protein interaction networks are essential for studies in systems biology. One of the most popular network visualization tools in biology is Cytoscape, which offers a large selection of plugins for interpretation of protein interaction data. Chemical cross-linking coupled to mass spectrometry (XL-MS) is an increasingly important source for such interaction data, but there are currently no Cytoscape tools to analyze XL-MS results. In light of the suitability of Cytoscape platform but also to expand its toolbox, here we introduce XlinkCyNET, an open-source Cytoscape Java plugin for exploring large-scale XL-MS-based protein interaction networks. XlinkCyNET offers rapid and easy visualization of intra and intermolecular cross-links and the locations of protein domains in a rectangular bar style, allowing subdomain-level interrogation of the interaction network. XlinkCyNET is freely available from the Cytoscape app store: http://apps.cytoscape.org/apps/xlinkcynet and at https://www.theliulab.com/software/xlinkcynet.


2020 ◽  
Author(s):  
Aidan MacNamara ◽  
Nikolina Nakic ◽  
Ali Amin ◽  
Cong Guo ◽  
Karsten B. Sieber ◽  
...  

AbstractIt is widely accepted that genetic evidence of disease association acts as a sound basis for the selection of drug targets for complex common diseases and that propagation of genetic evidence through gene or protein interaction networks can accurately infer novel disease associations at genes for which no direct genetic evidence can be observed. However, an empirical test of the utility of combining these beliefs for drug discovery has been lacking.In this study, we examine genetic associations arising from an analysis of 648 UK Biobank GWAS and evaluate whether targets identified as proxies of direct genetic hits are enriched for successful drug targets, as measured by historical clinical trial data.We find that protein networks formed from specific functional linkages such as protein complexes and ligand-receptor pairs are suitable for even naïve guilt-by-association network propagation approaches. In addition, more sophisticated approaches applied to global protein-protein interaction networks and pathway databases, also successfully retrieve targets enriched for clinically successful drug targets. We conclude that network propagation of genetic evidence should be used for drug target identification.


2021 ◽  
Vol 12 ◽  
Author(s):  
Wenjiang Zheng ◽  
Ting Wang ◽  
Peng Wu ◽  
Qian Yan ◽  
Chengxin Liu ◽  
...  

Background: The COVID-19 pandemic poses an imminent threat to humanity, especially for those who have comorbidities. Evidence of COVID-19 and COPD comorbidities is accumulating. However, data revealing the molecular mechanism of COVID-19 and COPD comorbid diseases is limited.Methods: We got COVID-19/COPD -related genes from different databases by restricted screening conditions (top500), respectively, and then supplemented with COVID-19/COPD-associated genes (FDR<0.05, |LogFC|≥1) from clinical sample data sets. By taking the intersection, 42 co-morbid host factors for COVID-19 and COPD were finally obtained. On the basis of shared host factors, we conducted a series of bioinformatics analysis, including protein-protein interaction analysis, gene ontology and pathway enrichment analysis, transcription factor-gene interaction network analysis, gene-microRNA co-regulatory network analysis, tissue-specific enrichment analysis and candidate drug prediction.Results: We revealed the comorbidity mechanism of COVID-19 and COPD from the perspective of host factor interaction, obtained the top ten gene and 3 modules with different biological functions. Furthermore, we have obtained the signaling pathways and concluded that dexamethasone, estradiol, progesterone, and nitric oxide shows effective interventions.Conclusion: This study revealed host factor interaction networks for COVID-19 and COPD, which could confirm the potential drugs for treating the comorbidity, ultimately, enhancing the management of the respiratory disease.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Aidan MacNamara ◽  
Nikolina Nakic ◽  
Ali Amin Al Olama ◽  
Cong Guo ◽  
Karsten B. Sieber ◽  
...  

AbstractGenetic evidence of disease association has often been used as a basis for selecting of drug targets for complex common diseases. Likewise, the propagation of genetic evidence through gene or protein interaction networks has been shown to accurately infer novel disease associations at genes for which no direct genetic evidence can be observed. However, an empirical test of the utility of combining these approaches for drug discovery has been lacking. In this study, we examine genetic associations arising from an analysis of 648 UK Biobank GWAS and evaluate whether targets identified as proxies of direct genetic hits are enriched for successful drug targets, as measured by historical clinical trial data. We find that protein networks formed from specific functional linkages such as protein complexes and ligand–receptor pairs are suitable for even naïve guilt-by-association network propagation approaches. In addition, more sophisticated approaches applied to global protein–protein interaction networks and pathway databases, also successfully retrieve targets enriched for clinically successful drug targets. We conclude that network propagation of genetic evidence can be used for drug target identification.


Sign in / Sign up

Export Citation Format

Share Document