scholarly journals Resampling the pool of genotypic possibilities: an adaptive function of sexual reproduction

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Donal A. Hickey ◽  
G. Brian Golding

Abstract Background Natural populations harbor significant levels of genetic variability. Because of this standing genetic variation, the number of possible genotypic combinations is many orders of magnitude greater than the population size. This means that any given population contains only a tiny fraction of all possible genotypic combinations. Results We show that recombination allows a finite population to resample the genotype pool, i.e., the universe of all possible genotypic combinations. Recombination, in combination with natural selection, enables an evolving sexual population to replace existing genotypes with new, higher-fitness genotypic combinations that did not previously exist in the population. This process allows the sexual population to gradually increase its fitness far beyond the range of fitnesses in the initial population. In contrast to this, an asexual population is limited to selection among existing lower fitness genotypes. Conclusions The results provide an explanation for the ubiquity of sexual reproduction in evolving natural populations, especially when natural selection is acting on the standing genetic variation.

2021 ◽  
Author(s):  
Donal Hickey ◽  
Brian Golding

Abstract BackgroundNatural populations harbor significant levels of genetic variability. Because of this standing genetic variation, the number of possible genotypic combinations is many orders of magnitude greater than the population size. This means that any given population contains only a tiny fraction of all possible genotypic combinations.ResultsWe show that recombination allows a finite population to resample the genotype pool, i.e., the universe of all possible genotypic combinations. Recombination, in combination with natural selection, enables an evolving sexual population to replace existing genotypes with new, higher-fitness genotypic combinations that did not previously exist in the population. Gradually the selected sexual population approaches a state where the optimum genotype is produced by recombination and where it rises to fixation. In contrast to this, an asexual population is limited to selection among existing lower fitness genotypes.ConclusionsThe significance of the result is two-fold. First, it provides an explanation for the ubiquity of sexual reproduction in evolving populations. Secondly, it shows that recombination serves to remove concerns about the cost of natural selection acting on the naturally occurring standing genetic variation. This means that classic population genetics theory is applicable to ecological studies of natural selection acting on standing genetic variation.


2020 ◽  
Author(s):  
Donal A. Hickey ◽  
G. Brian Golding

AbstractRecombination allows a finite population to resample the genotype pool, i.e., the universe of all possible genotypic combinations. This is important in populations that contain abundant genetic variation because, in such populations, the number of potential genotypes is much larger than the number of individuals in the population. Here, we show how recombination, in combination with natural selection, enables an evolving sexual population to replace existing genotypes with new, higher-fitness genotypic combinations. In contrast to this, an asexual population is limited to selection among existing genotypes. Since it has been shown that most eukaryotic species are genetically polymorphic, our model can explain the ubiquity of sex among such species. The model also indicates that classic population genetics theory is applicable to ecological studies of natural selection acting on standing genetic variation.


eLife ◽  
2016 ◽  
Vol 5 ◽  
Author(s):  
Wen Huang ◽  
Richard F Lyman ◽  
Rachel A Lyman ◽  
Mary Anna Carbone ◽  
Susan T Harbison ◽  
...  

Mutation and natural selection shape the genetic variation in natural populations. Here, we directly estimated the spontaneous mutation rate by sequencing new Drosophila mutation accumulation lines maintained with minimal natural selection. We inferred strong stabilizing natural selection on quantitative traits because genetic variation among wild-derived inbred lines was much lower than predicted from a neutral model and the mutational effects were much larger than allelic effects of standing polymorphisms. Stabilizing selection could act directly on the traits, or indirectly from pleiotropic effects on fitness. However, our data are not consistent with simple models of mutation-stabilizing selection balance; therefore, further empirical work is needed to assess the balance of evolutionary forces responsible for quantitative genetic variation.


Author(s):  
Ailene MacPherson ◽  
Matthew J. Keeling ◽  
Sarah P. Otto

AbstractCoevolutionary negative frequency dependent selection has been hypothesized to maintain genetic variation in host and parasites. Despite the extensive literature pertaining to host-parasite coevolution, the effect of matching-alleles (MAM) coevolution on the maintenance of genetic variation has not been explicitly modelled in a finite population. The dynamics of the MAM in an infinite population, in fact, suggests that genetic variation in these coevolving populations behaves neutrally. We find that while this is largely true in finite populations two additional phenomena arise. The first of these effects is that of coevolutionary natural selection on stochastic perturbations in host and pathogen allele frequencies. While this may increase or decrease genetic variation, depending on the parameter conditions, the net effect is small relative to that of the second phenomena. Following fixation in the pathogen, the MAM becomes one of directional selection, which in turn rapidly erodes genetic variation in the host. Hence, rather than maintain it, we find that, on average, matching-alleles coevolution depletes genetic variation.


Author(s):  
Zachariah Gompert ◽  
Lauren Lucas

The study of evolution in natural populations has advanced our understanding of the origin and maintenance of biological diversity. For example, long term studies of wild populations indicate that natural selection can cause rapid and dramatic changes in traits, but that in some cases these evolutionary changes are quickly reversed when periodic variation in weather patterns or the biotic environment cause the optimal trait value to change (e.g., Reznick et al. 1997, Grant and Grant 2002). In fact, spatial and temporal variation in the strength and nature of natural selection could explain the high levels of genetic variation found in many natural populations (Gillespie 1994, Siepielski et al. 2009). Long term studies of evolution in the wild could also be informative for biodiversity conservation and resource management, because, for example, data on short term evolutionary responses to annual fluctuations in temperature or rainfall could be used to predict longer term evolution in response to directional climate change. Most previous research on evolution in the wild has considered one or a few observable traits or genes (e.g., Kapan 2001, Grant and Grant 2002, Barrett et al. 2008). We believe that more general conclusions regarding the rate and causes of evolutionary change in the wild and selection’s contribution to the maintenance of genetic variation could be obtained by studying genome-wide molecular evolution in a suite of natural populations. Thus, in 2012 we began a long term study of genome-wide molecular evolution in a series of natural butterfly populations in the Greater Yellowstone Area (GYA). This study will allow us to quantify the contribution of environment-dependent natural selection to evolution in these butterfly populations and determine whether selection consistently favors the same alleles across space and through time.


Author(s):  
Zachariah Gompert ◽  
Lauren Lucas

The study of evolution in natural populations has advanced our understanding of the origin and maintenance of biological diversity. For example, long term studies of wild populations indicate that natural selection can cause rapid and dramatic changes in traits, but that in some cases these evolutionary changes are quickly reversed when periodic variation in weather patterns or the biotic environment cause the optimal trait value to change (e.g., Reznick et al. 1997; Grant and Grant 2002). In fact, spatial and temporal variation in the strength and nature of natural selection could explain the high levels of genetic variation found in many natural populations (Gillespie 1994; Siepielski et al. 2009). Long term studies of evolution in the wild could also be informative for biodiversity conservation and resource management, because, for example, data on short term evolutionary responses to annual fluctuations in temperature or rainfall could be used to predict longer term evolution in response to directional climate change. Most previous research on evolution in the wild has considered one or a few observable traits or genes (Kapan 2001; Grant and Grant 2002; Barrett et al. 2008). We believe that more general conclusions regarding the rate and causes of evolutionary change in the wild and selection’s contribution to the maintenance of genetic variation could be obtained by studying genome-wide molecular evolution in a suite of natural populations. Thus, we have begun a long term study of genome-wide molecular evolution in a series of natural butterfly populations in the Greater Yellowstone Area (GYA). This study will allow us to quantify the contribution of environment-dependent natural selection to evolution in these butterfly populations and determine whether selection consistently favors the same alleles across space and through time.


Genetics ◽  
1998 ◽  
Vol 150 (2) ◽  
pp. 523-532 ◽  
Author(s):  
Paul E Turner ◽  
Lin Chao

Abstract Sex allows beneficial mutations that occur in separate lineages to be fixed in the same genome. For this reason, the Fisher-Muller model predicts that adaptation to the environment is more rapid in a large sexual population than in an equally large asexual population. Sexual reproduction occurs in populations of the RNA virus φ6 when multiple bacteriophages coinfect the same host cell. Here, we tested the model's predictions by determining whether sex favors more rapid adaptation of φ6 to a bacterial host, Pseudomonas phaseolicola. Replicate populations of φ6 were allowed to evolve in either the presence or absence of sex for 250 generations. All experimental populations showed a significant increase in fitness relative to the ancestor, but sex did not increase the rate of adaptation. Rather, we found that the sexual and asexual treatments also differ because intense intrahost competition between viruses occurs during coinfection. Results showed that the derived sexual viruses were selectively favored only when coinfection is common, indicating that within-host competition detracts from the ability of viruses to exploit the host. Thus, sex was not advantageous because the cost created by intrahost competition was too strong. Our findings indicate that high levels of coinfection exceed an optimum where sex may be beneficial to populations of φ6, and suggest that genetic conflicts can evolve in RNA viruses.


Author(s):  
Aleeza C. Gerstein ◽  
Nathaniel Sharp

Ploidy is a significant type of genetic variation, describing the number of chromosome sets per cell. Ploidy evolves in natural populations, clinical populations, and lab experiments, particularly in fungi. Despite a long history of theoretical work on this topic, predicting how ploidy will evolve has proven difficult, as it is often unclear why one ploidy state outperforms another. Here, we review what is known about contemporary ploidy evolution in diverse fungal species through the lens of population genetics. As with typical genetic variants, ploidy evolution depends on the rate that new ploidy states arise by mutation, natural selection on alternative ploidy states, and random genetic drift. However, ploidy variation also has unique impacts on evolution, with the potential to alter chromosomal stability, the rate and patterns of point mutation, and the nature of selection on all loci in the genome. We discuss how ploidy evolution depends on these general and unique factors and highlight areas where additional experimental evidence is required to comprehensively explain the ploidy transitions observed in the field and the lab.


1994 ◽  
Vol 63 (1) ◽  
pp. 63-78 ◽  
Author(s):  
Paul G. Higgs

SummaryWe study multi-locus models for the accumulation of disadvantagenous mutant alleles in diploid populations. The theory used is closely related to the quasi-species theory of molecular evolution. The stationary mutant distribution may either be localized close to a peak in the fitness landscape or delocalized throughout sequence space. In some cases there is a sharp transition between these two cases known as an error threshold. We study a multiplicative fitness landscape where the fitness of an individual with j homozygous mutant loci and k heterozygous loci is wjk = (1 − s)j (1 − hs)k. For a sexual population in this landscape there are two types of solution separated by an error threshold. For a parthenogenetic population there may be three types of solution and two error thresholds for some values of h. For a population reproducing by selfing the solution is independent of h, since the frequency of heterozygous individuals is negligible. The mean fitnesses of the populations depend on the reproductive method even for the multiplicative landscape. The sexual may have a higher or lower fitness than the parthenogen, depending on the values of h and u/s. Selfing leads to a higher mean fitness than either sexual reproduction or parthenogenesis. We also study a fitness landscape with epistatic interactions with wjk = exp(− s(2j + k)α). The sexual population has a higher fitness than the parthenogen when α > 1. This confirms previous theories that sexual reproduction is advantageous in cases of synergistic epistasis. The mean fitness of a selfing population was found to be higher than both the sexual and the parthenogen over the range of parameter values studied. We discuss these results in relation to the theory of the evolution of sex. The fitness of the stationary distribution in cases where unfavourable mutations accumulation is one factor which could explain the observed prevalence of sexual reproduction in natural populations, although other factors may be more important in many cases.


Genetics ◽  
1999 ◽  
Vol 153 (2) ◽  
pp. 1041-1053 ◽  
Author(s):  
David Waxman ◽  
Joel R Peck

Abstract In this study we consider a mathematical model of a sexual population that lives in a changing environment. We find that a low rate of environmental change can produce a very large increase in genetic variability. This may help to explain the high levels of heritability observed in many natural populations. We also study asexuality and find that a modest rate of environmental change can be very damaging to an asexual population, while leaving a sexual population virtually unscathed. Furthermore, in a changing environment, the advantages of sexuality over asexuality can be much greater than suggested by most previous studies. Our analysis applies in the case of very large populations, where stochastic forces may be neglected.


Sign in / Sign up

Export Citation Format

Share Document