scholarly journals The Population Genetics of Ploidy Change in Fungi

Author(s):  
Aleeza C. Gerstein ◽  
Nathaniel Sharp

Ploidy is a significant type of genetic variation, describing the number of chromosome sets per cell. Ploidy evolves in natural populations, clinical populations, and lab experiments, particularly in fungi. Despite a long history of theoretical work on this topic, predicting how ploidy will evolve has proven difficult, as it is often unclear why one ploidy state outperforms another. Here, we review what is known about contemporary ploidy evolution in diverse fungal species through the lens of population genetics. As with typical genetic variants, ploidy evolution depends on the rate that new ploidy states arise by mutation, natural selection on alternative ploidy states, and random genetic drift. However, ploidy variation also has unique impacts on evolution, with the potential to alter chromosomal stability, the rate and patterns of point mutation, and the nature of selection on all loci in the genome. We discuss how ploidy evolution depends on these general and unique factors and highlight areas where additional experimental evidence is required to comprehensively explain the ploidy transitions observed in the field and the lab.

Author(s):  
Aleeza C Gerstein ◽  
Nathaniel P Sharp

Abstract Changes in ploidy are a significant type of genetic variation, describing the number of chromosome sets per cell. Ploidy evolves in natural populations, clinical populations, and lab experiments, particularly in fungi. Despite a long history of theoretical work on this topic, predicting how ploidy will evolve has proven difficult, as it is often unclear why one ploidy state outperforms another. Here, we review what is known about contemporary ploidy evolution in diverse fungal species through the lens of population genetics. As with typical genetic variants, ploidy evolution depends on the rate that new ploidy states arise by mutation, natural selection on alternative ploidy states, and random genetic drift. However, ploidy variation also has unique impacts on evolution, with the potential to alter chromosomal stability, the rate and patterns of point mutation, and the nature of selection on all loci in the genome. We discuss how ploidy evolution depends on these general and unique factors and highlight areas where additional experimental evidence is required to comprehensively explain the ploidy transitions observed in the field and the lab.


Genetics ◽  
1975 ◽  
Vol 80 (2) ◽  
pp. 375-394
Author(s):  
C F Wehrhahn

Abstract Most of the models of population genetics are not realistic when applied to data on electrophoretic variants of proteins because the same net charge may result from any of several amino acid combinations. In the absence of realistic models they have, however, been widely used to test competing hypotheses about the origin and maintenance of genetic variation in populations. In this paper I present a general method for determining probability generating functions for electrophoretic state differences. Then I use the method to find allelic state difference distributions for selectively similar electrophoretically detectable alleles in finite natural populations. Predicted patterns of genetic variation, both within and among species, are in reasonable accord with those found in the Drosophila willistoni group by Ayala et al. (1972) and by Ayala and Tracey (1974).


Much has been learned about transposable genetic elements in Drosophila , but questions still remain, especially concerning their evolutionary significance. Three such questions are considered here, (i) Has the behaviour of transposable elements been most influenced by natural selection at the level of the organism, the population, or the elements themselves? (ii) How did the elements originate in the genome of the species? (iii) Why are laboratory stocks different from natural populations with respect to their transposable element composition? No final answers to these questions are yet available, but by focusing on the two families of hybrid dysgenesis-causing elements, the P and I factors, we can draw some tentative conclusions.


1981 ◽  
Vol 37 (2) ◽  
pp. 133-149 ◽  
Author(s):  
Tomoko Ohta

SUMMARYIn order to understand the evolution of genetic systems in which two genes are tandemly repeated (small multigene family) such as has been recently found in the haemoglobin α loci of primates, haemoglobin β loci of mouse and rarbit and other proteins, a population genetics approach was used. Special reference was made to the probarility of gene identity (identity coefficient), when unequal crossing-over is continuously occurring as well as random genetic drift, inter-chromosomal recombination and mutation. Two models were studied, cycle and selection models. The former assumes that unequal crossing-over occurs in cycles of duplication and deletion, and that the equilibrium identity coefficients were obtained. The latter is based on more realistic biological phenomena, and in this model it is assumed that natural selection is responsible for eliminating chromosomes with extra or deficient gene dose. Unequal crossing-over, inter-chromosomal recombination and natural selection lead to a duplication-deletion balance, which can then be treated as though it were a cycle model. The basic parameter is the rate of duplication-deletion which is shown to be approximately equal to 2(u + 2β)X, where u is the unequal crossing-over rate, 2β is the inter-chromosomal recombination rate and X is the frequency of chromosomes with three genes or of that with one gene. Genetic variation of the globin gene family, of which gene organization is known in most detail, is discussed in the light of the present analyses.


eLife ◽  
2016 ◽  
Vol 5 ◽  
Author(s):  
Wen Huang ◽  
Richard F Lyman ◽  
Rachel A Lyman ◽  
Mary Anna Carbone ◽  
Susan T Harbison ◽  
...  

Mutation and natural selection shape the genetic variation in natural populations. Here, we directly estimated the spontaneous mutation rate by sequencing new Drosophila mutation accumulation lines maintained with minimal natural selection. We inferred strong stabilizing natural selection on quantitative traits because genetic variation among wild-derived inbred lines was much lower than predicted from a neutral model and the mutational effects were much larger than allelic effects of standing polymorphisms. Stabilizing selection could act directly on the traits, or indirectly from pleiotropic effects on fitness. However, our data are not consistent with simple models of mutation-stabilizing selection balance; therefore, further empirical work is needed to assess the balance of evolutionary forces responsible for quantitative genetic variation.


2018 ◽  
Author(s):  
Elizabeth ML Duxbury ◽  
Jonathan P Day ◽  
Davide Maria Vespasiani ◽  
Yannik Thüringer ◽  
Ignacio Tolosana ◽  
...  

AbstractIt is common to find considerable genetic variation in susceptibility to infection in natural populations. We have investigated whether natural selection increases this variation by testing whether host populations show more genetic variation in susceptibility to pathogens that they naturally encounter than novel pathogens. In a large cross-infection experiment involving four species of Drosophila and four host-specific viruses, we always found greater genetic variation in susceptibility to viruses that had coevolved with their host. We went on to examine the genetic architecture of resistance in one host species, finding that there are more major-effect genetic variants in coevolved host-parasite interactions. We conclude that selection by pathogens increases genetic variation in host susceptibility, and much of this effect is caused by the occurrence of major-effect resistance polymorphisms within populations.


1975 ◽  
Vol 24 (1-2) ◽  
pp. 111-117
Author(s):  
Ranajit Chakraborty

Different mathematical approaches to study the extent of genetic variation of natural populations are reviewed. The modern understanding of the gene structure permits new interpretations of existing concepts like fixation or inbreeding. A more recent measure of genie divergence, which at molecular level is designed to measure net codon differences is also seen to be related with gene diversity in a substructed population. It is argued that such variations are produced and preserved possibly by simultaneous action of migration, mutation, selection, and random genetic drift. At the present moment it is very difficult to isolate out the effect of each factor because of varying degrees of variation at the different gene sites and between different sets of populations.


Author(s):  
Zachariah Gompert ◽  
Lauren Lucas

The study of evolution in natural populations has advanced our understanding of the origin and maintenance of biological diversity. For example, long term studies of wild populations indicate that natural selection can cause rapid and dramatic changes in traits, but that in some cases these evolutionary changes are quickly reversed when periodic variation in weather patterns or the biotic environment cause the optimal trait value to change (e.g., Reznick et al. 1997, Grant and Grant 2002). In fact, spatial and temporal variation in the strength and nature of natural selection could explain the high levels of genetic variation found in many natural populations (Gillespie 1994, Siepielski et al. 2009). Long term studies of evolution in the wild could also be informative for biodiversity conservation and resource management, because, for example, data on short term evolutionary responses to annual fluctuations in temperature or rainfall could be used to predict longer term evolution in response to directional climate change. Most previous research on evolution in the wild has considered one or a few observable traits or genes (e.g., Kapan 2001, Grant and Grant 2002, Barrett et al. 2008). We believe that more general conclusions regarding the rate and causes of evolutionary change in the wild and selection’s contribution to the maintenance of genetic variation could be obtained by studying genome-wide molecular evolution in a suite of natural populations. Thus, in 2012 we began a long term study of genome-wide molecular evolution in a series of natural butterfly populations in the Greater Yellowstone Area (GYA). This study will allow us to quantify the contribution of environment-dependent natural selection to evolution in these butterfly populations and determine whether selection consistently favors the same alleles across space and through time.


Author(s):  
Zachariah Gompert ◽  
Lauren Lucas

The study of evolution in natural populations has advanced our understanding of the origin and maintenance of biological diversity. For example, long term studies of wild populations indicate that natural selection can cause rapid and dramatic changes in traits, but that in some cases these evolutionary changes are quickly reversed when periodic variation in weather patterns or the biotic environment cause the optimal trait value to change (e.g., Reznick et al. 1997; Grant and Grant 2002). In fact, spatial and temporal variation in the strength and nature of natural selection could explain the high levels of genetic variation found in many natural populations (Gillespie 1994; Siepielski et al. 2009). Long term studies of evolution in the wild could also be informative for biodiversity conservation and resource management, because, for example, data on short term evolutionary responses to annual fluctuations in temperature or rainfall could be used to predict longer term evolution in response to directional climate change. Most previous research on evolution in the wild has considered one or a few observable traits or genes (Kapan 2001; Grant and Grant 2002; Barrett et al. 2008). We believe that more general conclusions regarding the rate and causes of evolutionary change in the wild and selection’s contribution to the maintenance of genetic variation could be obtained by studying genome-wide molecular evolution in a suite of natural populations. Thus, we have begun a long term study of genome-wide molecular evolution in a series of natural butterfly populations in the Greater Yellowstone Area (GYA). This study will allow us to quantify the contribution of environment-dependent natural selection to evolution in these butterfly populations and determine whether selection consistently favors the same alleles across space and through time.


Author(s):  
Moritz A. Ehrlich ◽  
Dominique N. Wagner ◽  
Marjorie F. Oleksiak ◽  
Douglas L. Crawford

AbstractEvolution by natural selection may be effective enough to allow for recurrent, rapid adaptation to distinct niche environments within a well-mixed population. For this to occur, selection must act on standing genetic variation such that mortality i.e. genetic load, is minimized while polymorphism is maintained. Selection on multiple, redundant loci of small effect provides a potentially inexpensive solution. Yet, demonstrating adaptation via redundant, polygenic selection in the wild remains extremely challenging because low per-locus effect sizes and high genetic redundancy severely reduce statistical power. One approach to facilitate identification of loci underlying polygenic selection is to harness natural replicate populations experiencing similar selection pressures that harbor high within-, yet negligible among-population genetic variation. Such populations can be found among the teleost Fundulus heteroclitus. F. heteroclitus inhabits salt marsh estuaries that are characterized by high environmental heterogeneity e.g. tidal ponds, creeks, coastal basins. Here, we sample four of these heterogeneous niches (one coastal basin and three replicate tidal ponds) at two time points from among a single, panmictic F. heteroclitus population. We identify 10,861 single nucleotide polymorphisms using a genotyping-by-sequencing approach and quantify temporal allele frequency change within, as well as spatial divergence among subpopulations residing in these niches. We find a significantly elevated number of concordant allele frequency changes among all subpopulations, suggesting ecosystem-wide adaptation to a common selection pressure. Remarkably, we also find an unexpected number of temporal allele frequency changes that generate fine-scale divergence among subpopulations, suggestive of local adaptation to distinct niche environments. Both patterns are characterized by a lack of large-effect loci yet an elevated total number of significant loci. Adaptation via redundant, polygenic selection offers a likely explanation for these patterns as well as a potential mechanism for polymorphism maintenance in the F. heteroclitus system.Author SummaryEvolution by adaptation to local environmental conditions may occur more rapidly than previously thought. Recent studies show that natural selection is extremely effective when acting on, not one, but multiple genetic variants that are already present in a population. Here, we show that polygenic selection can lead to adaptation within a single generation by studying a wild, well-mixed population of mud minnows inhabiting environmentally distinct locations or niches (i.e. tidal ponds and coastal basins). We monitor allele proportions at over 10,000 genetic variants over time within a single generation and find a significant number to be changing substantially in every niche, suggestive of natural selection. We further demonstrate this genetic change to be non-random, generating mild, yet significant divergence between residents inhabiting distinct niches, indicative of local adaptation. We corroborate a previous study which discovered similar genetic divergence among niches during a different year, suggesting that local adaptation via natural selection occurs every generation. We show polygenic selection on standing genetic variation to be an effective and evolutionarily inexpensive mechanism, allowing organisms to rapidly adapt to their environments even at extremely short time scales. Our study provides valuable insights into the rate of evolution and the ability of organisms to respond to environmental change.


Sign in / Sign up

Export Citation Format

Share Document