scholarly journals Coevolution does not slow the rate of loss of heterozygosity in a stochastic host-parasite model with constant population size

Author(s):  
Ailene MacPherson ◽  
Matthew J. Keeling ◽  
Sarah P. Otto

AbstractCoevolutionary negative frequency dependent selection has been hypothesized to maintain genetic variation in host and parasites. Despite the extensive literature pertaining to host-parasite coevolution, the effect of matching-alleles (MAM) coevolution on the maintenance of genetic variation has not been explicitly modelled in a finite population. The dynamics of the MAM in an infinite population, in fact, suggests that genetic variation in these coevolving populations behaves neutrally. We find that while this is largely true in finite populations two additional phenomena arise. The first of these effects is that of coevolutionary natural selection on stochastic perturbations in host and pathogen allele frequencies. While this may increase or decrease genetic variation, depending on the parameter conditions, the net effect is small relative to that of the second phenomena. Following fixation in the pathogen, the MAM becomes one of directional selection, which in turn rapidly erodes genetic variation in the host. Hence, rather than maintain it, we find that, on average, matching-alleles coevolution depletes genetic variation.

Genetics ◽  
1972 ◽  
Vol 72 (4) ◽  
pp. 771-775 ◽  
Author(s):  
Philip W Hedrick

ABSTRACT A frequency-dependent selection model proposed by Huang, Singh and Kojima (1971) was found to be more effective at maintaining genetic variation in a finite population than the overdominant model. The fourth moment parameter of the distribution of unfixed states showed that there was a more platykurtic distribution for the frequency-dependent model. This agreed well with the expected gene frequency change found for an infinite population.


Genetics ◽  
1974 ◽  
Vol 78 (2) ◽  
pp. 757-770
Author(s):  
Philip W Hedrick

ABSTRACT The conditions for a stable polymorphism and the equilibrium gene frequency in an infinite population are compared when there is spatial or temporal environmental heterogeneity for the absolute dominance model. For temporal variation the conditions for stability are more restrictive and the equilibrium gene frequency is often at a low gene frequency. In a finite population, temporal environmental heterogeneity for the absolute dominance model was found to be quite ineffective in maintaining genetic variation and is often less effective than no selection at all. For comparison, the maximum maintenance for temporal variation is related to the overdominant model. In general, cyclic environmental variation was found to be more effective at maintaining genetic variation than where the environment varies stochastically. The importance of temporal environmental variation and the maintenance of genetic variation is discussed.


2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Zorana Kurbalija Novičić ◽  
Ahmed Sayadi ◽  
Mihailo Jelić ◽  
Göran Arnqvist

Abstract Background Understanding the forces that maintain diversity across a range of scales is at the very heart of biology. Frequency-dependent processes are generally recognized as the most central process for the maintenance of ecological diversity. The same is, however, not generally true for genetic diversity. Negative frequency dependent selection, where rare genotypes have an advantage, is often regarded as a relatively weak force in maintaining genetic variation in life history traits because recombination disassociates alleles across many genes. Yet, many regions of the genome show low rates of recombination and genetic variation in such regions (i.e., supergenes) may in theory be upheld by frequency dependent selection. Results We studied what is essentially a ubiquitous life history supergene (i.e., mitochondrial DNA) in the fruit fly Drosophila subobscura, showing sympatric polymorphism with two main mtDNA genotypes co-occurring in populations world-wide. Using an experimental evolution approach involving manipulations of genotype starting frequencies, we show that negative frequency dependent selection indeed acts to maintain genetic variation in this region. Moreover, the strength of selection was affected by food resource conditions. Conclusions Our work provides novel experimental support for the view that balancing selection through negative frequency dependency acts to maintain genetic variation in life history genes. We suggest that the emergence of negative frequency dependent selection on mtDNA is symptomatic of the fundamental link between ecological processes related to resource use and the maintenance of genetic variation.


Genetics ◽  
1973 ◽  
Vol 74 (2) ◽  
pp. 371-380
Author(s):  
Masatoshi Nei ◽  
A K Roychoudhury

ABSTRACT The probability of fixation of an overdominant mutation in a finite population depends on the equilibrium gene frequency in an infinite population (m) and the product (A) of population size and selection intensity. If m < 0.5 (disadvantageous overdominant genes), the probability is generally much lower than that of neutral genes; but if m is close to 0.5 and A is relatively small, it becomes higher. If m > 0.5 (advantageous overdominant genes), the probability is largely determined by the fitness of heterozygotes rather than that of mutant homozygotes. Thus, overdominance enhances the probability of fixation of advantageous mutations. The average number of generations until fixation of an overdominant mutation also depends on m and A. This average time is long when m is close to 0.5 but short when m is close to 0 or 1. This dependence on m and A is similar to that of Robertson's retardation factor.


2019 ◽  
Vol 30 (6) ◽  
pp. 1672-1681 ◽  
Author(s):  
Jennifer J Valvo ◽  
F Helen Rodd ◽  
Kimberly A Hughes

Abstract How genetic variation is maintained in ecologically important traits is a central question in evolutionary biology. Male Trinidadian guppies, Poecilia reticulata, exhibit high genetic diversity in color patterns within populations, and field and laboratory studies implicate negative frequency-dependent selection in maintaining this variation. However, behavioral and ecological processes that mediate this selection in natural populations are poorly understood. We evaluated female mate preference in 11 natural guppy populations, including paired populations from high- and low-predation habitats, to determine if this behavior is responsible for negative frequency-dependent selection and to evaluate its prevalence in nature. Females directed significantly more attention to males with rare and unfamiliar color patterns than to males with common patterns. Female attention also increased with the area of male orange coloration, but this preference was independent of the preference for rare and unfamiliar patterns. We also found an overall effect of predation regime; females from high-predation populations directed more attention toward males than those from low-predation populations. Again, however, the habitat-linked preference was statistically independent from the preference for rare and unfamiliar patterns. Because previous research indicates that female attention to males predicts male mating success, we conclude that the prevalence of female preference for males with rare and unfamiliar color patterns across many natural populations supports the hypothesis that female preference is an important process underlying the maintenance of high genetic variation in guppy color patterns.


2021 ◽  
Author(s):  
Donal Hickey ◽  
Brian Golding

Abstract BackgroundNatural populations harbor significant levels of genetic variability. Because of this standing genetic variation, the number of possible genotypic combinations is many orders of magnitude greater than the population size. This means that any given population contains only a tiny fraction of all possible genotypic combinations.ResultsWe show that recombination allows a finite population to resample the genotype pool, i.e., the universe of all possible genotypic combinations. Recombination, in combination with natural selection, enables an evolving sexual population to replace existing genotypes with new, higher-fitness genotypic combinations that did not previously exist in the population. Gradually the selected sexual population approaches a state where the optimum genotype is produced by recombination and where it rises to fixation. In contrast to this, an asexual population is limited to selection among existing lower fitness genotypes.ConclusionsThe significance of the result is two-fold. First, it provides an explanation for the ubiquity of sexual reproduction in evolving populations. Secondly, it shows that recombination serves to remove concerns about the cost of natural selection acting on the naturally occurring standing genetic variation. This means that classic population genetics theory is applicable to ecological studies of natural selection acting on standing genetic variation.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Donal A. Hickey ◽  
G. Brian Golding

Abstract Background Natural populations harbor significant levels of genetic variability. Because of this standing genetic variation, the number of possible genotypic combinations is many orders of magnitude greater than the population size. This means that any given population contains only a tiny fraction of all possible genotypic combinations. Results We show that recombination allows a finite population to resample the genotype pool, i.e., the universe of all possible genotypic combinations. Recombination, in combination with natural selection, enables an evolving sexual population to replace existing genotypes with new, higher-fitness genotypic combinations that did not previously exist in the population. This process allows the sexual population to gradually increase its fitness far beyond the range of fitnesses in the initial population. In contrast to this, an asexual population is limited to selection among existing lower fitness genotypes. Conclusions The results provide an explanation for the ubiquity of sexual reproduction in evolving natural populations, especially when natural selection is acting on the standing genetic variation.


1995 ◽  
Vol 65 (3) ◽  
pp. 175-191 ◽  
Author(s):  
Olivia P. Judson

SummaryUnderstanding how genetic variability is maintained in natural populations is of both theoretical and practical interest. In particular, the subdivision of populations into demes linked by low levels of migration has been suggested to play an important role. But the maintenance of genetic variation in populations is also often linked to the maintenance of sexual reproduction: any force that acts to maintain sex should also act to maintain variation. One theory for the maintenance of sex, the Red Queen, states that sex and variation are maintained by antagonistic coevolutionary interactions – especially those between hosts and their harmful parasites – that give rise to negative frequency-dependent selection. In this paper I present a model to examine the relationships between population subdivision, negative frequency-dependent selection due to parasites, the maintenance of sex, and the preservation of alleles from fixation. The results show strong interactions between migration rates, negative frequency-dependent selection, and the maintenance of variability for sexual and asexual populations.


Sign in / Sign up

Export Citation Format

Share Document