scholarly journals Parent-of-origin effects on genome-wide DNA methylation in the Cape honey bee (Apis mellifera capensis) may be confounded by allele-specific methylation

BMC Genomics ◽  
2016 ◽  
Vol 17 (1) ◽  
Author(s):  
Emily J. Remnant ◽  
Alyson Ashe ◽  
Paul E. Young ◽  
Gabriele Buchmann ◽  
Madeleine Beekman ◽  
...  
2020 ◽  
Vol 12 (8) ◽  
pp. 1482-1492
Author(s):  
Xin Wu ◽  
David A Galbraith ◽  
Paramita Chatterjee ◽  
Hyeonsoo Jeong ◽  
Christina M Grozinger ◽  
...  

Abstract Parent-of-origin methylation arises when the methylation patterns of a particular allele are dependent on the parent it was inherited from. Previous work in honey bees has shown evidence of parent-of-origin-specific expression, yet the mechanisms regulating such pattern remain unknown in honey bees. In mammals and plants, DNA methylation is known to regulate parent-of-origin effects such as genomic imprinting. Here, we utilize genotyping of reciprocal European and Africanized honey bee crosses to study genome-wide allele-specific methylation patterns in sterile and reproductive individuals. Our data confirm the presence of allele-specific methylation in honey bees in lineage-specific contexts but also importantly, though to a lesser degree, parent-of-origin contexts. We show that the majority of allele-specific methylation occurs due to lineage rather than parent-of-origin factors, regardless of the reproductive state. Interestingly, genes affected by allele-specific DNA methylation often exhibit both lineage and parent-of-origin effects, indicating that they are particularly labile in terms of DNA methylation patterns. Additionally, we re-analyzed our previous study on parent-of-origin-specific expression in honey bees and found little association with parent-of-origin-specific methylation. These results indicate strong genetic background effects on allelic DNA methylation and suggest that although parent-of-origin effects are manifested in both DNA methylation and gene expression, they are not directly associated with each other.


2020 ◽  
Author(s):  
H. Marshall ◽  
A.R.C. Jones ◽  
Z.N. Lonsdale ◽  
E.B. Mallon

AbstractAllele-specific expression is when one allele of a gene shows higher levels of expression compared to the other allele, in a diploid organism. Genomic imprinting is an extreme example of this, where some genes exhibit allele-specific expression in a parent-of-origin manner. Recent work has identified potentially imprinted genes in species of Hymenoptera. However, the molecular mechanism which drives this allelic expression bias remains unknown. In mammals DNA methylation is often associated with imprinted genes. DNA methylation systems have been described in species of Hymenoptera, providing a candidate imprinting mechanism. Using previously generated RNA-Seq and whole genome bisulfite sequencing from reproductive and sterile bumblebee (Bombus terrestris) workers we have identified genome-wide allele-specific expression and allele-specific DNA methylation. The majority of genes displaying allele-specific expression are common between reproductive castes and the proportion of allele-specific expression bias generally varies between colonies. We have also identified genome-wide allele-specific DNA methylation patterns in both castes. There is no significant overlap between genes showing allele-specific expression and allele-specific methylation. These results indicate that DNA methylation does not directly drive genome-wide allele-specific expression in this species. Only a small number of the genes identified may be ‘imprinted’ and it may be these genes which are associated with allele-specific DNA methylation. Future work utilising reciprocal crosses to identify parent-of-origin DNA methylation will further clarify the role of DNA methylation in parent-of-origin allele-specific expression.


2018 ◽  
Vol 27 (16) ◽  
pp. 2927-2939 ◽  
Author(s):  
Gabriel Cuellar Partida ◽  
Charles Laurin ◽  
Susan M Ring ◽  
Tom R Gaunt ◽  
Allan F McRae ◽  
...  

2020 ◽  
Vol 12 (8) ◽  
pp. 1471-1481
Author(s):  
Hollie Marshall ◽  
Alun R C Jones ◽  
Zoë N Lonsdale ◽  
Eamonn B Mallon

Abstract Allele-specific expression is when one allele of a gene shows higher levels of expression compared with the other allele, in a diploid organism. Recent work has identified allele-specific expression in a number of Hymenopteran species. However, the molecular mechanism which drives this allelic expression bias remains unknown. In mammals, DNA methylation is often associated with genes which show allele-specific expression. DNA methylation systems have been described in species of Hymenoptera, providing a candidate mechanism. Using previously generated RNA-Seq and whole-genome bisulfite sequencing from reproductive and sterile bumblebee (Bombus terrestris) workers, we have identified genome-wide allele-specific expression and allele-specific DNA methylation. The majority of genes displaying allele-specific expression are common between reproductive and sterile workers and the proportion of allele-specific expression bias generally varies between genetically distinct colonies. We have also identified genome-wide allele-specific DNA methylation patterns in both reproductive and sterile workers, with reproductive workers showing significantly more genes with allele-specific methylation. Finally, there is no significant overlap between genes showing allele-specific expression and allele-specific methylation. These results indicate that cis-acting DNA methylation does not directly drive genome-wide allele-specific expression in this species.


2014 ◽  
Vol 281 (1775) ◽  
pp. 20132388 ◽  
Author(s):  
Benjamin P. Oldroyd ◽  
Michael H. Allsopp ◽  
Katherine M. Roth ◽  
Emily J. Remnant ◽  
Robert A. Drewell ◽  
...  

Apis mellifera capensis is unique among honeybees in that unmated workers can produce pseudo-clonal female offspring via thelytokous parthenogenesis. Workers use this ability to compete among themselves and with their queen to be the mother of new queens. Males could therefore enhance their reproductive success by imprinting genes that enhance fertility in their daughter workers. This possibility sets the scene for intragenomic conflict between queens and drones over worker reproductive traits. Here, we show a strong parent-of-origin effect for ovary size (number of ovarioles) in reciprocal crosses between two honeybee subspecies, A. m. capensis and Apis mellifera scutellata. In this cross, workers with an A. m. capensis father had 30% more ovarioles than genotypically matched workers with an A. m. scutellata father. Other traits we measured (worker weight at emergence and the presence/absence of a spermatheca) are influenced more by rearing conditions than by parent-of-origin effects. Our study is the first to show a strong epigenetic (or, less likely, cytoplasmic maternal) effect for a reproductive trait in the honeybee and suggests that a search for parent-of-origin effects in other social insects may be fruitful.


Diabetes ◽  
2001 ◽  
Vol 50 (12) ◽  
pp. 2850-2857 ◽  
Author(s):  
R. S. Lindsay ◽  
S. Kobes ◽  
W. C. Knowler ◽  
P. H. Bennett ◽  
R. L. Hanson

PLoS ONE ◽  
2010 ◽  
Vol 5 (9) ◽  
pp. e12513 ◽  
Author(s):  
Delphine Fradin ◽  
Keely Cheslack-Postava ◽  
Christine Ladd-Acosta ◽  
Craig Newschaffer ◽  
Aravinda Chakravarti ◽  
...  

2017 ◽  
Vol 7 (1) ◽  
Author(s):  
Jingli Zhao ◽  
Shuling Li ◽  
Lijuan Wang ◽  
Li Jiang ◽  
Runqing Yang ◽  
...  

2012 ◽  
Vol 59 (3) ◽  
pp. 351-359 ◽  
Author(s):  
F. Goudie ◽  
M. H. Allsopp ◽  
M. Beekman ◽  
J. Lim ◽  
B. P. Oldroyd

Sign in / Sign up

Export Citation Format

Share Document