scholarly journals Bumblebee Workers Show Differences in Allele-Specific DNA Methylation and Allele-Specific Expression

2020 ◽  
Vol 12 (8) ◽  
pp. 1471-1481
Author(s):  
Hollie Marshall ◽  
Alun R C Jones ◽  
Zoë N Lonsdale ◽  
Eamonn B Mallon

Abstract Allele-specific expression is when one allele of a gene shows higher levels of expression compared with the other allele, in a diploid organism. Recent work has identified allele-specific expression in a number of Hymenopteran species. However, the molecular mechanism which drives this allelic expression bias remains unknown. In mammals, DNA methylation is often associated with genes which show allele-specific expression. DNA methylation systems have been described in species of Hymenoptera, providing a candidate mechanism. Using previously generated RNA-Seq and whole-genome bisulfite sequencing from reproductive and sterile bumblebee (Bombus terrestris) workers, we have identified genome-wide allele-specific expression and allele-specific DNA methylation. The majority of genes displaying allele-specific expression are common between reproductive and sterile workers and the proportion of allele-specific expression bias generally varies between genetically distinct colonies. We have also identified genome-wide allele-specific DNA methylation patterns in both reproductive and sterile workers, with reproductive workers showing significantly more genes with allele-specific methylation. Finally, there is no significant overlap between genes showing allele-specific expression and allele-specific methylation. These results indicate that cis-acting DNA methylation does not directly drive genome-wide allele-specific expression in this species.

2020 ◽  
Author(s):  
H. Marshall ◽  
A.R.C. Jones ◽  
Z.N. Lonsdale ◽  
E.B. Mallon

AbstractAllele-specific expression is when one allele of a gene shows higher levels of expression compared to the other allele, in a diploid organism. Genomic imprinting is an extreme example of this, where some genes exhibit allele-specific expression in a parent-of-origin manner. Recent work has identified potentially imprinted genes in species of Hymenoptera. However, the molecular mechanism which drives this allelic expression bias remains unknown. In mammals DNA methylation is often associated with imprinted genes. DNA methylation systems have been described in species of Hymenoptera, providing a candidate imprinting mechanism. Using previously generated RNA-Seq and whole genome bisulfite sequencing from reproductive and sterile bumblebee (Bombus terrestris) workers we have identified genome-wide allele-specific expression and allele-specific DNA methylation. The majority of genes displaying allele-specific expression are common between reproductive castes and the proportion of allele-specific expression bias generally varies between colonies. We have also identified genome-wide allele-specific DNA methylation patterns in both castes. There is no significant overlap between genes showing allele-specific expression and allele-specific methylation. These results indicate that DNA methylation does not directly drive genome-wide allele-specific expression in this species. Only a small number of the genes identified may be ‘imprinted’ and it may be these genes which are associated with allele-specific DNA methylation. Future work utilising reciprocal crosses to identify parent-of-origin DNA methylation will further clarify the role of DNA methylation in parent-of-origin allele-specific expression.


PeerJ ◽  
2017 ◽  
Vol 5 ◽  
pp. e3798 ◽  
Author(s):  
Zoë Lonsdale ◽  
Kate Lee ◽  
Maria Kiriakidu ◽  
Harindra Amarasinghe ◽  
Despina Nathanael ◽  
...  

The social hymenoptera are emerging as models for epigenetics. DNA methylation, the addition of a methyl group, is a common epigenetic marker. In mammals and flowering plants methylation affects allele specific expression. There is contradictory evidence for the role of methylation on allele specific expression in social insects. The aim of this paper is to investigate allele specific expression and monoallelic methylation in the bumblebee, Bombus terrestris. We found nineteen genes that were both monoallelically methylated and monoallelically expressed in a single bee. Fourteen of these genes express the hypermethylated allele, while the other five express the hypomethylated allele. We also searched for allele specific expression in twenty-nine published RNA-seq libraries. We found 555 loci with allele-specific expression. We discuss our results with reference to the functional role of methylation in gene expression in insects and in the as yet unquantified role of genetic cis effects in insect allele specific methylation and expression.


2015 ◽  
Author(s):  
Zoë N. Lonsdale ◽  
Kate D. Lee ◽  
Maria Kyriakidou ◽  
Harindra E. Amarasinghe ◽  
Despina Nathanael ◽  
...  

ABSTRACTThe social hymenoptera are emerging as models for epigenetics. DNA methylation, the addition of a methyl group, is a common epigenetic marker. In mammals and flowering plants methylation affects allele specific expression. There is contradictory evidence for the role of methylation on allele specific expression in social insects. The aim of this paper is to investigate allele specific expression and monoallelic methylation in the bumblebee, Bombus terrestris. We found nineteen genes that were both monoallelically methylated and monoallelically expressed in a single bee. Fourteen of these genes express the hypermethylated allele, while the other five express the hypomethylated allele. We also searched for allele specific expression in twenty-nine published RNA-seq libraries. We found 555 loci with allele-specific expression. We discuss our results with reference to the functional role of methylation in gene expression in insects and in the, as yet unquantified, role of genetic cis effects in insect allele specific methylation and expression.


2020 ◽  
Author(s):  
◽  
Alwyn Clark Go

Speciation occurs when reproductive barriers prevent the exchange of genetic information between individuals. A common form of reproductive barrier between species capable of interbreeding is hybrid sterility. Genomic incompatibilities between the divergent genomes of different species contribute to a reduction in hybrid fitness. These incompatibilities continue to accumulate after speciation, therefore, young divergent taxa with incomplete reproductive isolation are important in understating the genetics leading to speciation. Here, I use two Drosophila subspecies pairs. The first is D. willistoni consisting of D. w. willistoni and D. w. winge. The second subspecies pair is D. pseudoobscura, which is composed of D. p. pseudoobscura and D. p. bogotana. Both subspecies pairs are at the early stages of speciation and show incomplete reproductive isolation through unidirectional hybrid male sterility. In this thesis, I performed an exploratory survey of genome-wide expression analysis using RNA-sequencing on D. willistoni and determined the extent of regulatory divergence between the subspecies using allele-specific expression analysis. I found that misexpressed genes showed a degree of tissue specificity and that the sterile male hybrids had a higher proportion of misexpressed genes in the testes relative to the fertile hybrids. The analysis of regulatory divergence between this subspecies pair found a large (66-70%) proportion of genes with conserved regulatory elements. Of the genes showing evidence or regulatory divergence between subspecies, cis-regulatory divergence was more common than other types. In the D. pseudoobscura subspecies pair, I compared sequence and expression divergence and found no support for directional selection driving gene misexpression in their hybrids. Allele-specific expression analysis revealed that compensatory cis-trans mutations partly explained gene misexpression in the hybrids. The remaining hybrid misexpression occurs due to interacting gene networks or possible co-option of cis-regulatory elements by divergent transacting factors. Overall, the results of this thesis highlight the role of regulatory interactions in a hybrid genome and how these interactions could lead to hybrid breakdown by disrupting gene interaction networks.


2019 ◽  
Vol 116 (12) ◽  
pp. 5653-5658 ◽  
Author(s):  
Lin Shao ◽  
Feng Xing ◽  
Conghao Xu ◽  
Qinghua Zhang ◽  
Jian Che ◽  
...  

Utilization of heterosis has greatly increased the productivity of many crops worldwide. Although tremendous progress has been made in characterizing the genetic basis of heterosis using genomic technologies, molecular mechanisms underlying the genetic components are much less understood. Allele-specific expression (ASE), or imbalance between the expression levels of two parental alleles in the hybrid, has been suggested as a mechanism of heterosis. Here, we performed a genome-wide analysis of ASE by comparing the read ratios of the parental alleles in RNA-sequencing data of an elite rice hybrid and its parents using three tissues from plants grown under four conditions. The analysis identified a total of 3,270 genes showing ASE (ASEGs) in various ways, which can be classified into two patterns: consistent ASEGs such that the ASE was biased toward one parental allele in all tissues/conditions, and inconsistent ASEGs such that ASE was found in some but not all tissues/conditions, including direction-shifting ASEGs in which the ASE was biased toward one parental allele in some tissues/conditions while toward the other parental allele in other tissues/conditions. The results suggested that these patterns may have distinct implications in the genetic basis of heterosis: The consistent ASEGs may cause partial to full dominance effects on the traits that they regulate, and direction-shifting ASEGs may cause overdominance. We also showed that ASEGs were significantly enriched in genomic regions that were differentially selected during rice breeding. These ASEGs provide an index of the genes for future pursuit of the genetic and molecular mechanism of heterosis.


2020 ◽  
Vol 52 (1) ◽  
Author(s):  
Yan Liu ◽  
Xiaolei Liu ◽  
Zhiwei Zheng ◽  
Tingting Ma ◽  
Ying Liu ◽  
...  

Abstract Background Genetic analysis of gene expression level is a promising approach for characterizing candidate genes that are involved in complex economic traits such as meat quality. In the present study, we conducted expression quantitative trait loci (eQTL) and allele-specific expression (ASE) analyses based on RNA-sequencing (RNAseq) data from the longissimus muscle of 189 Duroc × Luchuan crossed pigs in order to identify some candidate genes for meat quality traits. Results Using a genome-wide association study based on a mixed linear model, we identified 7192 cis-eQTL corresponding to 2098 cis-genes (p ≤ 1.33e-3, FDR ≤ 0.05) and 6400 trans-eQTL corresponding to 863 trans-genes (p ≤ 1.13e-6, FDR ≤ 0.05). ASE analysis using RNAseq SNPs identified 9815 significant ASE-SNPs in 2253 unique genes. Integrative analysis between the cis-eQTL and ASE target genes identified 540 common genes, including 33 genes with expression levels that were correlated with at least one meat quality trait. Among these 540 common genes, 63 have been reported previously as candidate genes for meat quality traits, such as PHKG1 (q-value = 1.67e-6 for the leading SNP in the cis-eQTL analysis), NUDT7 (q-value = 5.67e-13), FADS2 (q-value = 8.44e-5), and DGAT2 (q-value = 1.24e-3). Conclusions The present study confirmed several previously published candidate genes and identified some novel candidate genes for meat quality traits via eQTL and ASE analyses, which will be useful to prioritize candidate genes in further studies.


2015 ◽  
Author(s):  
Harindra E Amarasinghe ◽  
Bradley J Toghill ◽  
Eamonn B Mallon

Genomic imprinting is the differential expression of alleles, with the expression being dependent upon the sex of the parent from which it was inherited. Hymenopteran insects (ants, bees and wasps) are emerging as potential models for genomic imprinting and epigenetics. As a first step in establishing the possibility of genomic imprinting in the bumblebee, Bombus terrestris, we search for allele specific expression in twelve genes associated with worker reproduction. We found that the patrigene (allele from the father) is more expressed than the matrigene (allele from the mother) in Ecdysone 20 monooxygenase. This enzyme catalyses the reaction which turns the ecdysteroid ecdysone into 20-hydroxyecdysone, also an ecdysteroid. Both of these ecdysteroids are important for worker reproduction in the bumblebee.


Sign in / Sign up

Export Citation Format

Share Document