scholarly journals Gene silencing pathways found in the green alga Volvox carteri reveal insights into evolution and origins of small RNA systems in plants

BMC Genomics ◽  
2016 ◽  
Vol 17 (1) ◽  
Author(s):  
Anne Dueck ◽  
Maurits Evers ◽  
Stefan R. Henz ◽  
Katharina Unger ◽  
Norbert Eichner ◽  
...  
Development ◽  
2020 ◽  
Vol 147 (22) ◽  
pp. dev195578
Author(s):  
Rajaram Vishnupriya ◽  
Linitha Thomas ◽  
Lamia Wahba ◽  
Andrew Fire ◽  
Kuppuswamy Subramaniam

ABSTRACTThe germline genome is guarded against invading foreign genetic elements by small RNA-dependent gene-silencing pathways. Components of these pathways localize to, or form distinct aggregates in the vicinity of, germ granules. These components and their dynamics in and out of granules are currently being intensively studied. Here, we report the identification of PLP-1, a Caenorhabditiselegans protein related to the human single-stranded nucleic acid-binding protein Pur-alpha, as a component of germ granules in C. elegans. We show that PLP-1 is essential for silencing different types of transgenes in the germ line and for suppressing the expression of several endogenous genes controlled by the germline gene-silencing pathways. Our results reveal that PLP-1 functions downstream of small RNA biogenesis during initiation of gene silencing. Based on these results and the earlier findings that Pur-alpha proteins interact with both RNA and protein, we propose that PLP-1 couples certain RNAs with their protein partners in the silencing complex. PLP-1 orthologs localized on RNA granules may similarly contribute to germline gene silencing in other organisms.


RNA ◽  
2014 ◽  
Vol 20 (12) ◽  
pp. 1987-1999 ◽  
Author(s):  
Tadeusz Wroblewski ◽  
Marta Matvienko ◽  
Urszula Piskurewicz ◽  
Huaqin Xu ◽  
Belinda Martineau ◽  
...  

Gene ◽  
2009 ◽  
Vol 435 (1-2) ◽  
pp. 1-8 ◽  
Author(s):  
Lihua Jin ◽  
Kirill Kryukov ◽  
Yoshiyuki Suzuki ◽  
Tadashi Imanishi ◽  
Kazuho Ikeo ◽  
...  

Plant Methods ◽  
2021 ◽  
Vol 17 (1) ◽  
Author(s):  
Kunxin Wu ◽  
Yadan Wu ◽  
Chunwei Zhang ◽  
Yan Fu ◽  
Zhixin Liu ◽  
...  

Abstract Background Virus-induced gene silencing (VIGS) is a useful tool for functional characterizations of plant genes. However, the penetrance of VIGS varies depending on the genes to be silenced, and has to be evaluated by examining the transcript levels of target genes. Results In this report, we report the development of a novel VIGS vector that permits a preliminary assessment of the silencing penetrance. This new vector is based on an attenuated variant of Turnip crinkle virus (TCV) known as CPB that can be readily used in Arabidopsis thaliana to interrogate genes of this model plant. A CPB derivative, designated CPB1B, was produced by inserting a 46 nucleotide section of the Arabidopsis PHYTOENE DESATURASE (PDS) gene into CPB, in antisense orientation. CPB1B induced robust PDS silencing, causing easily visible photobleaching in systemically infected Arabidopsis leaves. More importantly, CPB1B can accommodate additional inserts, derived from other Arabidopsis genes, causing the silencing of two or more genes simultaneously. With photobleaching as a visual marker, we adopted the CPB1B vector to validate the involvement of DICER-LIKE 4 (DCL4) in antiviral defense against TCV. We further revealed the involvement of ARGONAUTE 2 (AGO2) in PDS silencing and antiviral defense against TCV in dcl2drb4 double mutant plants. These results demonstrated that DOUBLE-STRANDED RNA-BINDING PROTEIN 4 (DRB4), whose protein product (DRB4) commonly partners with DCL4 in the antiviral silencing pathway, was dispensable for PDS silencing induced by CPB1B derivative in dcl2drb4 double mutant plants. Conclusions The CPB1B-based vector developed in this work is a valuable tool with visualizable indicator of the silencing penetrance for interrogating Arabidopsis genes, especially those involved in the RNA silencing pathways.


2015 ◽  
Vol 112 (47) ◽  
pp. 14587-14592 ◽  
Author(s):  
Michael J. Spellberg ◽  
Michael T. Marr

Small RNA pathways are important players in posttranscriptional regulation of gene expression. These pathways play important roles in all aspects of cellular physiology from development to fertility to innate immunity. However, almost nothing is known about the regulation of the central genes in these pathways. The forkhead box O (FOXO) family of transcription factors is a conserved family of DNA-binding proteins that responds to a diverse set of cellular signals. FOXOs are crucial regulators of cellular homeostasis that have a conserved role in modulating organismal aging and fitness. Here, we show that Drosophila FOXO (dFOXO) regulates the expression of core small RNA pathway genes. In addition, we find increased dFOXO activity results in an increase in RNA interference (RNAi) efficacy, establishing a direct link between cellular physiology and RNAi. Consistent with these findings, dFOXO activity is stimulated by viral infection and is required for effective innate immune response to RNA virus infection. Our study reveals an unanticipated connection among dFOXO, stress responses, and the efficacy of small RNA-mediated gene silencing and suggests that organisms can tune their gene silencing in response to environmental and metabolic conditions.


2021 ◽  
Vol 59 (1) ◽  
Author(s):  
Yongli Qiao ◽  
Rui Xia ◽  
Jixian Zhai ◽  
Yingnan Hou ◽  
Li Feng ◽  
...  

Gene silencing guided by small RNAs governs a broad range of cellular processes in eukaryotes. Small RNAs are important components of plant immunity because they contribute to pathogen-triggered transcription reprogramming and directly target pathogen RNAs. Recent research suggests that silencing of pathogen genes by plant small RNAs occurs not only during viral infection but also in nonviral pathogens through a process termed host-induced gene silencing, which involves trans-species small RNA trafficking. Similarly, small RNAs are also produced by eukaryotic pathogens and regulate virulence. This review summarizes the small RNA pathways in both plants and filamentous pathogens, including fungi and oomycetes, and discusses their role in host–pathogen interactions. We highlight secondary small interfering RNAs of plants as regulators of immune receptor gene expression and executors of host-induced gene silencing in invading pathogens. The current status and prospects of small RNAs trafficking at the host–pathogen interface are discussed. Expected final online publication date for the Annual Review of Phytopathology, Volume 59 is August 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


2021 ◽  
Author(s):  
Oscar Guillermo Rebolledo Prudencio ◽  
Magnolia Estrada Rivera ◽  
Mitzuko Dautt Castro ◽  
Mario A. Arteaga‐Vazquez ◽  
Catalina Arenas‐Huertero ◽  
...  

2020 ◽  
Vol 48 (4) ◽  
pp. 2050-2072 ◽  
Author(s):  
Margarita T Angelova ◽  
Dilyana G Dimitrova ◽  
Bruno Da Silva ◽  
Virginie Marchand ◽  
Caroline Jacquier ◽  
...  

Abstract 2′-O-Methylation (Nm) represents one of the most common RNA modifications. Nm affects RNA structure and function with crucial roles in various RNA-mediated processes ranging from RNA silencing, translation, self versus non-self recognition to viral defense mechanisms. Here, we identify two Nm methyltransferases (Nm-MTases) in Drosophila melanogaster (CG7009 and CG5220) as functional orthologs of yeast TRM7 and human FTSJ1. Genetic knockout studies together with MALDI-TOF mass spectrometry and RiboMethSeq mapping revealed that CG7009 is responsible for methylating the wobble position in tRNAPhe, tRNATrp and tRNALeu, while CG5220 methylates position C32 in the same tRNAs and also targets additional tRNAs. CG7009 or CG5220 mutant animals were viable and fertile but exhibited various phenotypes such as lifespan reduction, small RNA pathways dysfunction and increased sensitivity to RNA virus infections. Our results provide the first detailed characterization of two TRM7 family members in Drosophila and uncover a molecular link between enzymes catalyzing Nm at specific tRNAs and small RNA-induced gene silencing pathways.


Sign in / Sign up

Export Citation Format

Share Document