scholarly journals Partial-arm translocations in evolution of malaria mosquitoes revealed by high-coverage physical mapping of the Anopheles atroparvus genome

BMC Genomics ◽  
2018 ◽  
Vol 19 (1) ◽  
Author(s):  
Gleb N. Artemov ◽  
Semen M. Bondarenko ◽  
Anastasia N. Naumenko ◽  
Vladimir N. Stegniy ◽  
Maria V. Sharakhova ◽  
...  
2019 ◽  
Author(s):  
Andrew Medford ◽  
Shengchun Yang ◽  
Fuzhu Liu

Understanding the interaction of multiple types of adsorbate molecules on solid surfaces is crucial to establishing the stability of catalysts under various chemical environments. Computational studies on the high coverage and mixed coverages of reaction intermediates are still challenging, especially for transition-metal compounds. In this work, we present a framework to predict differential adsorption energies and identify low-energy structures under high- and mixed-adsorbate coverages on oxide materials. The approach uses Gaussian process machine-learning models with quantified uncertainty in conjunction with an iterative training algorithm to actively identify the training set. The framework is demonstrated for the mixed adsorption of CH<sub>x</sub>, NH<sub>x</sub> and OH<sub>x</sub> species on the oxygen vacancy and pristine rutile TiO<sub>2</sub>(110) surface sites. The results indicate that the proposed algorithm is highly efficient at identifying the most valuable training data, and is able to predict differential adsorption energies with a mean absolute error of ~0.3 eV based on <25% of the total DFT data. The algorithm is also used to identify 76% of the low-energy structures based on <30% of the total DFT data, enabling construction of surface phase diagrams that account for high and mixed coverage as a function of the chemical potential of C, H, O, and N. Furthermore, the computational scaling indicates the algorithm scales nearly linearly (N<sup>1.12</sup>) as the number of adsorbates increases. This framework can be directly extended to metals, metal oxides, and other materials, providing a practical route toward the investigation of the behavior of catalysts under high-coverage conditions.


2020 ◽  
Author(s):  
Tianyang Yan ◽  
Heta Desai ◽  
Lisa Boatner ◽  
Stephanie Yen ◽  
Jian Cao ◽  
...  

<p>We report a new cysteine chemoproteomic method, termed SP3-FAIMS chemoproteomics, which enables rapid and high coverage analysis of the human cysteinome. By combining enhanced cysteine biotinylation with SP3 sample decontamination and FAIMS online fraction, we identified in aggregate 34,225 unique cysteines found on 7,243 proteins. Showcasing the versatility of our method, integration with the isoTOP-ABPP workflow enabled the high throughput discovery of cysteines labelled by electrophilic compounds. </p>


2019 ◽  
Author(s):  
Luke Clifton ◽  
Nicoló Paracini ◽  
Arwel V. Hughes ◽  
Jeremy H. Lakey ◽  
Nina-Juliane Seinke ◽  
...  

<p>We present a reliable method for the fabrication of fluid phase unsaturated bilayers which are readily self-assembled on charged self-assembled monolayer (SAM) surfaces producing high coverage floating supported bilayers where the membrane to surface distance could be controlled with nanometer precision. Vesicle fusion was used to deposit the bilayers onto anionic SAM coated surfaces. Upon assembly the bilayer to SAM solution interlayer thickness was 7-10 Å with evidence suggesting that this layer was present due to SAM hydration repulsion of the bilayer from the surface. This distance could be increased using low concentrations of salts which caused the interlayer thickness to enlarge to ~33 Å. Reducing the salt concentration resulted in a return to a shorter bilayer to surface distance. These accessible and controllable membrane models are well suited to a range of potential applications in biophysical studies, bio-sensors and Nano-technology.</p><br>


ChemBioChem ◽  
2021 ◽  
Author(s):  
Tianyang Yan ◽  
Heta S. Desai ◽  
Lisa M. Boatner ◽  
Stephanie L. Yen ◽  
Jian Cao ◽  
...  
Keyword(s):  

Genetics ◽  
1999 ◽  
Vol 153 (4) ◽  
pp. 1701-1708 ◽  
Author(s):  
Martin Beye ◽  
Greg J Hunt ◽  
Robert E Page ◽  
M Kim Fondrk ◽  
Lore Grohmann ◽  
...  

Abstract Sex determination in Hymenoptera is controlled by haplo-diploidy in which unfertilized eggs develop into fertile haploid males. A single sex determination locus with several complementary alleles was proposed for Hymenoptera [so-called complementary sex determination (CSD)]. Heterozygotes at the sex determination locus are normal, fertile females, whereas diploid zygotes that are homozygous develop into sterile males. This results in a strong heterozygote advantage, and the sex locus exhibits extreme polymorphism maintained by overdominant selection. We characterized the sex-determining region by genetic linkage and physical mapping analyses. Detailed linkage and physical mapping studies showed that the recombination rate is &lt;44 kb/cM in the sex-determining region. Comparing genetic map distance along the linkage group III in three crosses revealed a large marker gap in the sex-determining region, suggesting that the recombination rate is high. We suggest that a “hotspot” for recombination has resulted here because of selection for combining favorable genotypes, and perhaps as a result of selection against deleterious mutations. The mapping data, based on long-range restriction mapping, suggest that the Q DNA-marker is within 20,000 bp of the sex locus, which should accelerate molecular analyses.


Sign in / Sign up

Export Citation Format

Share Document