complementary sex determination
Recently Published Documents


TOTAL DOCUMENTS

59
(FIVE YEARS 9)

H-INDEX

16
(FIVE YEARS 1)

Genes ◽  
2020 ◽  
Vol 11 (12) ◽  
pp. 1390
Author(s):  
Kim B. Ferguson ◽  
Bart A. Pannebakker ◽  
Alejandra Centurión ◽  
Joost van den Heuvel ◽  
Ronald Nieuwenhuis ◽  
...  

Bracon brevicornis is an ectoparasitoid of a wide range of larval-stage Lepidopterans, including several pests of important crops, such as the corn borer, Ostrinia nubilalis. It is also one of the earliest documented cases of complementary sex determination in Hymenoptera. Here, we present the linked-read-based genome of B. brevicornis, complete with an ab initio-derived annotation and protein comparisons with fellow braconids, Fopius arisanus and Diachasma alloeum. We demonstrate the potential of linked-read assemblies in exploring regions of heterozygosity and search for structural and homology-derived evidence of the complementary sex determiner gene (csd).


Author(s):  
Andrés S. Martínez ◽  
Natalia Rousselot ◽  
Juan C. Corley ◽  
Maité Masciocchi

Abstract Inbreeding costs can be high in haplodiploid hymenopterans due to their particular mechanism of sex determination (i.e., single-locus complementary sex-determination system, sl-CSD), as it can lead to the production of sterile males. Therefore, mechanisms contributing to reduced inbred matings can be beneficial. In this sense, asynchronous nest departure of sibling drones and gynes could reduce kin encounters in social hymenopterans. Using six observation colonies, we determined under field conditions the nest departure behaviour of sibling reproductives of the social wasp Vespula germanica (Hymenoptera: Vespidae). We determined that sexuals leave the nests definitively and detected asynchronous departure not fixed to a particular caste at a seasonal scale in some colonies, as gynes or drones delayed their departure as a function of the departure of the opposite sex, depending on the colony. At a higher temporal resolution (i.e., within a day), we discovered that drones consistently began to leave nests 1 h before gynes and this difference was driven by those individuals that left on the same day as did the opposite-sex kin. Even though other mechanisms such as polyandry and differential dispersal could also be important at reducing inbred matings in the species, the observed departure patterns (i.e., in some colonies actually leave together with the opposite caste, while in others temporal segregation seems to occur) from nests could be complementary to the former and be important at reducing the negative effects of inbreeding in this invasive species.


2020 ◽  
Author(s):  
K. B. Ferguson ◽  
B. A. Pannebakker ◽  
A. Centurión ◽  
J. van den Heuvel ◽  
R. Nieuwenhuis ◽  
...  

ABSTRACTBracon brevicornis is an ectoparasitoid of a wide range of larval-stage Lepidopterans, including several pests of important crops, such as the corn borer, Ostrinia nubilalis. It is also one of the earliest documented cases of complementary sex determination in Hymenoptera. Here, we present the linked-read genome of B. brevicornis, complete with an ab initio-derived annotation and protein comparisons with fellow braconids, Fopius arisanus and Diachasma alloem. We demonstrate the potential of linked-read assemblies in exploring regions of heterozygosity and search for structural and homology-derived evidence of the complementary sex determiner gene (csd).


2019 ◽  
Vol 11 (10) ◽  
pp. 2954-2962 ◽  
Author(s):  
Cyril Matthey-Doret ◽  
Casper J van der Kooi ◽  
Daniel L Jeffries ◽  
Jens Bast ◽  
Alice B Dennis ◽  
...  

Abstract Sex determination has evolved in a variety of ways and can depend on environmental and genetic signals. A widespread form of genetic sex determination is haplodiploidy, where unfertilized, haploid eggs develop into males and fertilized diploid eggs into females. One of the molecular mechanisms underlying haplodiploidy in Hymenoptera, the large insect order comprising ants, bees, and wasps, is complementary sex determination (CSD). In species with CSD, heterozygosity at one or several loci induces female development. Here, we identify the genomic regions putatively underlying multilocus CSD in the parasitoid wasp Lysiphlebus fabarum using restriction-site associated DNA sequencing. By analyzing segregation patterns at polymorphic sites among 331 diploid males and females, we identify up to four CSD candidate regions, all on different chromosomes. None of the candidate regions feature evidence for homology with the csd gene from the honey bee, the only species in which CSD has been characterized, suggesting that CSD in L. fabarum is regulated via a novel molecular mechanism. Moreover, no homology is shared between the candidate loci, in contrast to the idea that multilocus CSD should emerge from duplications of an ancestral single-locus system. Taken together, our results suggest that the molecular mechanisms underlying CSD in Hymenoptera are not conserved between species, raising the question as to whether CSD may have evolved multiple times independently in the group.


2019 ◽  
Author(s):  
Quan-quan Liu ◽  
Jin-cheng Zhou ◽  
Chen Zhang ◽  
Qian-jin Dong ◽  
Su-fang Ning ◽  
...  

Over 60 species in Hymenoptera have been reported to possess a complementary sex determination (CSD) system. Under CSD, sex is determined by allelic complementation at one or several sex loci. But this mechanism is still uninvestigated in parasitoid wasp Trichogramma dendrolimi, one of the most important biocontrol agents widely used against Lepidopteran pests. We tested CSD in this species by conducting ten consecutive generations of inbreeding, to monitor both direct evidence (diploid male production) and indirect evidence (brood size, sex ratio, mortality). In total 475 males detected from this inbreeding regime, only one was determined as diploidy. The observed proportions of diploid male offspring significantly differed from expected values under CSD model involving up to ten independent loci, allowing us to safely reject CSD in T. dendrolimi. Meanwhile, the possibility of unviable diploid males was excluded by the absence of significant differences in brood size, offspring sex ratio and offspring mortality among different generations. Our study of sex determination in T. dendrolimi provides useful information for the mass rearing conditions in a biofactory and the quality improvement of this biocontrol agent. It also brings necessary background to further study of the sex determination in Trichogramma.


2019 ◽  
Author(s):  
Quan-quan Liu ◽  
Jin-cheng Zhou ◽  
Chen Zhang ◽  
Qian-jin Dong ◽  
Su-fang Ning ◽  
...  

Over 60 species in Hymenoptera have been reported to possess a complementary sex determination (CSD) system. Under CSD, sex is determined by allelic complementation at one or several sex loci. But this mechanism is still uninvestigated in parasitoid wasp Trichogramma dendrolimi, one of the most important biocontrol agents widely used against Lepidopteran pests. We tested CSD in this species by conducting ten consecutive generations of inbreeding, to monitor both direct evidence (diploid male production) and indirect evidence (brood size, sex ratio, mortality). In total 475 males detected from this inbreeding regime, only one was determined as diploidy. The observed proportions of diploid male offspring significantly differed from expected values under CSD model involving up to ten independent loci, allowing us to safely reject CSD in T. dendrolimi. Meanwhile, the possibility of unviable diploid males was excluded by the absence of significant differences in brood size, offspring sex ratio and offspring mortality among different generations. Our study of sex determination in T. dendrolimi provides useful information for the mass rearing conditions in a biofactory and the quality improvement of this biocontrol agent. It also brings necessary background to further study of the sex determination in Trichogramma.


2019 ◽  
Author(s):  
Cyril Matthey-Doret ◽  
Casper J. van der Kooi ◽  
Daniel L. Jeffries ◽  
Jens Bast ◽  
Alice B. Dennis ◽  
...  

AbstractSex determination has evolved in a variety of ways and can depend on environmental and genetic signals. A widespread form of genetic sex determination is haplodiploidy, where unfertilized, haploid eggs develop into males and fertilized diploid eggs into females. One of the molecular mechanisms underlying haplodiploidy in Hymenoptera, a large insect order comprising ants, bees and wasps, is known as complementary sex determination (CSD). In species with CSD, heterozygosity at one or several loci induces female development. Here, we identify the genomic regions putatively underlying multi-locus CSD in the parasitoid wasp Lysiphlebus fabarum using restriction-site associated DNA sequencing. By analysing segregation patterns at polymorphic sites among 331 diploid males and females, we identify four CSD candidate regions, all on different chromosomes. None of the candidate regions feature evidence for homology with the csd gene from the honeybee, the only species in which CSD has been characterized, suggesting that CSD in L. fabarum is regulated via a novel molecular mechanism. Moreover, no homology is shared between the candidate loci, in contrast to the idea that multi-locus CSD should emerge from duplications of an ancestral single-locus system. Taken together, our results suggest that the molecular mechanisms underlying CSD in Hymenoptera are not conserved between species, raising the question as to whether CSD may have evolved multiple times independently in the group.Author summaryThe genetic or environmental signals that govern whether an organism develops into a male or female differ across species, and understanding their evolution is a key aspect of biology. In this paper, we focus on complementary sex determination (CSD), a genetic sex determination system found in many species of bees, ants and wasps where heterozygosity at one or multiple genetic regions determines the sex of the individual. We identify multiple genetic regions in the parasitoid wasp species Lysiphlebus fabarum that are likely underlying CSD. We show that these candidate CSD regions share no similarity with each other and that they differ from the CSD region known in the honey bee, the only species with a well-characterized CSD system. Our results suggest a different molecular mechanism underlying CSD in the wasp and that multiple CSD regions do not necessarily arise from duplications as generally thought.


2019 ◽  
Vol 109 (6) ◽  
pp. 794-811
Author(s):  
M. Garba ◽  
A. Loiseau ◽  
C. Tatard ◽  
L. Benoit ◽  
N. Gauthier

AbstractWhen a promising natural enemy of a key pest exists locally, it is a common practice in biological control (BC) to rear and release it for supplementary control in the targeted agroecosystem even though significant knowledge gaps concerning pre/post release may still exist. Incorporating genetic information into BC research fills some of these gaps. Habrobracon hebetor, a parasitoid of many economically important moths that infest stored and field crops worldwide is commonly used, particularly against the millet head miner (MHM), a key pest of millet in Sahelian countries. To advance our knowledge on how H. hebetor that occurs naturally in open-field cropping systems and grain stores as well as being mass-produced and released for MHM control, performs in millet agroecosystems in Niger we evaluated its population genetics using two mitochondrial and 21 microsatellite markers. The field samples were genetically more diverse and displayed heterozygote excess. Very few field samples had faced significant recent demographic bottlenecks. The mating system (i.e. nonrandom mating with complementary sex determination) of this species may be the major driver of these findings rather than bottlenecks caused by the small number of individuals released and the scarcity of hosts during the longlasting dry season in Niger. H. hebetor population structure was represented by several small patches and genetically distinct individuals. Gene flow occurred at local and regional scales through human-mediated and natural short-distance dispersal. These findings highlight the importance of the mating system in the genetic diversity and structure of H. hebetor populations, and contribute to our understanding of its reported efficacy against MHM in pearl millet fields.


Sign in / Sign up

Export Citation Format

Share Document