scholarly journals Longitudinal alterations of the cisternal segment of trigeminal nerve and brain pain-matrix regions in patients with trigeminal neuralgia before and after treatment

2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Tai-Yuan Chen ◽  
Ching-Chung Ko ◽  
Te-Chang Wu ◽  
Li-Ching Lin ◽  
Yun-Ju Shih ◽  
...  

Abstract Background Trigeminal neuralgia (TN) is the most common type of chronic neuropathic facial pain, but the etiology and pathophysiological mechanisms after treatment are still not well understood. The purpose of this study was to investigate the longitudinal changes of the cisternal segment of the trigeminal nerve and brain pain-related regions in patients with TN before and after treatment using readout segmentation of long variable echo-train (RESOLVE) diffusion tensor imaging (DTI) and transverse relaxation (T2)-weighted sampling perfection with application-optimized contrast at different flip angle evolutions (T2-SPACE). Methods Twelve patients with TN and four healthy controls were enrolled in this study. All patients underwent assessment of the visual analog scale (VAS), and acquisition of RESOLVE DTI and T2-SPACE images before and at 1, 6, and 12 months after treatments. Regions-of-interest were placed on the bilateral anterior, middle, and posterior parts of the cisternal segment of the trigeminal nerve, the bilateral root entry zone (REZ), bilateral nuclear zone, and the center of pontocerebellar tracts, respectively. Voxel-based morphometry (VBM) analysis was conducted with T2-SPACE images, and gray matter volumes (GMV) were measured from brain pain-matrix regions. Results The results demonstrated that the VAS scores, the axial diffusivity of the middle part of the affected cisternal trigeminal nerve, the fractional anisotropy of the bilateral nuclear zones, and the mean diffusivity of the center of pontocerebellar tract significantly changed over time before and after treatment. The changes of GMV in the pain-matrix regions exhibited similar trends to the VAS before and after treatment. Conclusion We conclude that magnetic resonance imaging with RESOLVE DTI and VBM with T2-SPACE images were helpful in the understanding of the pathophysiological mechanisms in patients with TN before and after treatment.

2021 ◽  
Author(s):  
Tai-Yuan Chen ◽  
Ching-Chung Ko ◽  
Te-Chang Wu ◽  
Li-Ching Lin ◽  
Yun-Ju Shih ◽  
...  

Abstract Background: Trigeminal neuralgia (TN) is the most common type of chronic neuropathic facial pain, but the etiology and pathophysiological mechanisms after treatment are still not well understood. The purpose of this study was to investigate the longitudinal changes of the cisternal segment of the trigeminal nerve and brain pain-related regions in patients with TN before and after treatment using readout segmentation of long variable echo-train (RESOLVE) diffusion tensor imaging (DTI) and transverse relaxation (T2)-weighted sampling perfection with application-optimized contrast at different flip angle evolutions (T2-SPACE). Methods: Twelve patients with TN and four healthy controls were enrolled in this study. All patients underwent assessment of the visual analog scale (VAS), and acquisition of RESOLVE DTI and T2-SPACE images before and at 1, 6, and 12 months after treatments. Regions-of-interest were placed on the bilateral anterior, middle, and posterior parts of the cisternal segment of the trigeminal nerve, the bilateral root entry zone (REZ), bilateral nuclear zone, and the center of pontocerebellar tracts, respectively. Voxel-based morphometry (VBM) analysis was conducted with T2-SPACE images, and gray matter volumes (GMV) were measured from brain pain-matrix regions. Results: The results demonstrated that the axial diffusivity of the middle part of the cisternal trigeminal nerve, the fractional anisotropy of the bilateral nuclear zones, and the mean diffusivity of the center of pontocerebellar tract significantly changed over time before and after treatment. The changes of GMV in the pain-matrix regions exhibited similar trends to the VAS before and after treatment. Conclusion: We conclude that magnetic resonance imaging with RESOLVE DTI and VBM with T2-SPACE images were helpful in the understanding of the pathophysiological mechanisms in patients with TN before and after treatment.


2020 ◽  
Vol 133 (3) ◽  
pp. 727-735
Author(s):  
Peter Shih-Ping Hung ◽  
Sarasa Tohyama ◽  
Jia Y. Zhang ◽  
Mojgan Hodaie

OBJECTIVEGamma Knife radiosurgery (GKRS) is a noninvasive surgical treatment option for patients with medically refractive classic trigeminal neuralgia (TN). The long-term microstructural consequences of radiosurgery and their association with pain relief remain unclear. To better understand this topic, the authors used diffusion tensor imaging (DTI) to characterize the effects of GKRS on trigeminal nerve microstructure over multiple posttreatment time points.METHODSNinety-two sets of 3-T anatomical and diffusion-weighted MR images from 55 patients with TN treated by GKRS were divided within 6-, 12-, and 24-month posttreatment time points into responder and nonresponder subgroups (≥ 75% and < 75% reduction in posttreatment pain intensity, respectively). Within each subgroup, posttreatment pain intensity was then assessed against pretreatment levels and followed by DTI metric analyses, contrasting treated and contralateral control nerves to identify specific biomarkers of successful pain relief.RESULTSGKRS resulted in successful pain relief that was accompanied by asynchronous reductions in fractional anisotropy (FA), which maximized 24 months after treatment. While GKRS responders demonstrated significantly reduced FA within the radiosurgery target 12 and 24 months posttreatment (p < 0.05 and p < 0.01, respectively), nonresponders had statistically indistinguishable DTI metrics between nerve types at each time point.CONCLUSIONSUltimately, this study serves as the first step toward an improved understanding of the long-term microstructural effect of radiosurgery on TN. Given that FA reductions remained specific to responders and were absent in nonresponders up to 24 months posttreatment, FA changes have the potential of serving as temporally consistent biomarkers of optimal pain relief following radiosurgical treatment for classic TN.


Neurocirugía ◽  
2019 ◽  
Vol 30 (3) ◽  
pp. 105-114
Author(s):  
Rafael Medélez-Borbonio ◽  
Alexander Perdomo-Pantoja ◽  
Alejandro Apolinar Serrano-Rubio ◽  
Colson Tomberlin ◽  
Rogelio Revuelta-Gutiérrez ◽  
...  

Neurosurgery ◽  
2006 ◽  
Vol 59 (2) ◽  
pp. 354-359 ◽  
Author(s):  
Selçuk Peker ◽  
Özlem Kurtkaya ◽  
İbrahim Üzün ◽  
M Necmettin Pamir

Abstract OBJECTIVE: The aim of this study was to evaluate the microanatomy of the central myelin-peripheral myelin transitional zone (TZ) in trigeminal nerves from cadavers. METHODS: One hundred trigeminal nerves from 50 cadaver heads were examined. The cisternal portion of the nerve (from the pons to Meckel's cave) was measured. Horizontal sections were stained and photographed. The photomicrographs were used to measure the extent of central myelin on the medial and lateral aspects of the nerve and to classify TZ shapes. RESULTS: The cisternal portions of the specimens ranged from 8 to 15 mm long (mean, 12.3 mm; median, 11.9 mm). The data from the photomicrographs revealed that the extent of central myelin (distance from pons to TZ) on the medial aspect of the nerve (range, 0.1–2.5 mm; mean, 1.13 mm; median, 1 mm) was shorter than that on the lateral aspect (range, 0.17–6.75 mm; mean, 2.47 mm; median, 2.12 mm). CONCLUSION: The data definitively prove that the root entry zone (REZ, nerve-pons junction) and TZ of the trigeminal nerve are distinct sites and that these terms should never be used interchangeably. The measurements showed that the central myelin occupies only the initial one-fourth of the trigeminal nerve length. If trigeminal neuralgia is caused exclusively by vascular compression of the central myelin, the problem vessel would always have to be located in this region. However, it is well known that pain from trigeminal neuralgia can resolve after vascular decompression at more distal sites. This suggests that the effects of surgical decompression are caused by another mechanism.


1996 ◽  
Vol 84 (5) ◽  
pp. 818-825 ◽  
Author(s):  
Fred G. Barker ◽  
Peter J. Jannetta ◽  
Ramesh P. Babu ◽  
Spiros Pomonis ◽  
David J. Bissonette ◽  
...  

✓ During a 20-year period, 26 patients with typical symptoms of trigeminal neuralgia were found to have posterior fossa tumors at operation. These cases included 14 meningiomas, eight acoustic neurinomas, two epidermoid tumors, one angiolipoma, and one ependymoma. The median patient age was 60 years and 69% of the patients were women. Sixty-five percent of the symptoms were left sided. The median preoperative duration of symptoms was 5 years. The distribution of pain among the three divisions of the trigeminal nerve was similar to that found in patients with trigeminal neuralgia who did not have tumors; however, more divisions tended to be involved in the tumor patients. The mean postoperative follow-up period was 9 years. At operation, the root entry zone of the trigeminal nerve was examined for vascular cross-compression in 21 patients. Vessels compressing the nerve at the root entry zone were observed in all patients examined. Postoperative pain relief was frequent and long lasting. Using Kaplan—Meier methods the authors estimated excellent relief in 81% of the patients 10 years postoperatively, with partial relief in an additional 4%.


2014 ◽  
Vol 57 (3) ◽  
pp. 259-267 ◽  
Author(s):  
N. Lummel ◽  
J. H. Mehrkens ◽  
J. Linn ◽  
G. Buchholz ◽  
R. Stahl ◽  
...  

Neurosurgery ◽  
2009 ◽  
Vol 65 (5) ◽  
pp. 958-961 ◽  
Author(s):  
Gregory M. Helbig ◽  
James D. Callahan ◽  
Aaron A. Cohen-Gadol

Abstract OBJECTIVE Trigeminal neuralgia is often caused by compression, demyelination, and injury of the trigeminal nerve root entry zone by an adjacent artery and/or vein. Previously described variations of the nerve-vessel relationship note external nerve compression. We offer a detailed classification of intraneural vessels that travel through the trigeminal nerve and safe, effective surgical management. CLINICAL PRESENTATION We report 3 microvascular decompression operations for medically refractory trigeminal neuralgia during which the surgeon encountered a vein crossing through the trigeminal nerve. Two types of intraneural veins are described: type 1, in which the vein travels between the motor and sensory branches of the trigeminal nerve (1 patient), and type 2, in which the vein bisects the sensory branch (portio major) (2 patients). INTERVENTION We recommend sacrificing the intraneural vein between the motor and sensory branches if the vein is small (most likely type 1). If the intraneural vein is large and bisects the sensory branch (most likely type 2), vein mobilization can be achieved, but often requires extensive dissection through the nerve. Because this maneuver may lead to trigeminal nerve injury and result in uncomfortable neuropathy and numbness (including corneal hypoesthesia), we recommend against mobilization of the vein through the nerve, suggesting instead, consideration of a selective trigeminal nerve rhizotomy. CONCLUSION Because aggressive dissection of intraneural vessels can lead to higher than normal complication rates, preoperative knowledge of vein-trigeminal nerve variants is crucial for intraoperative success.


1980 ◽  
Vol 52 (3) ◽  
pp. 381-386 ◽  
Author(s):  
Stephen J. Haines ◽  
Peter J. Jannetta ◽  
David S. Zorub

✓ The vascular relationships of the trigeminal nerve root entry zone were examined bilaterally in 20 cadavers of individuals known to be free of facial pain. Fourteen of 40 nerves made contact with an artery, but only four of these showed evidence of compression or distortion of the nerve. In addition, the vascular relationships of 40 trigeminal nerves exposed surgically for treatment of trigeminal neuralgia were studied, and 31 nerves showed compression by adjacent arteries. Venous compression was seen in four of the cadaver nerves and in eight nerves from patients with trigeminal neuralgia. These data support the hypothesis that arterial compression of the trigeminal nerve is associated with trigeminal neuralgia.


2021 ◽  
Vol 15 ◽  
Author(s):  
Jinghui Lin ◽  
Lei Mou ◽  
Qifeng Yan ◽  
Shaodong Ma ◽  
Xingyu Yue ◽  
...  

Trigeminal neuralgia caused by paroxysmal and severe pain in the distribution of the trigeminal nerve is a rare chronic pain disorder. It is generally accepted that compression of the trigeminal root entry zone by vascular structures is the major cause of primary trigeminal neuralgia, and vascular decompression is the prior choice in neurosurgical treatment. Therefore, accurate preoperative modeling/segmentation/visualization of trigeminal nerve and its surrounding cerebrovascular is important to surgical planning. In this paper, we propose an automated method to segment trigeminal nerve and its surrounding cerebrovascular in the root entry zone, and to further reconstruct and visual these anatomical structures in three-dimensional (3D) Magnetic Resonance Angiography (MRA). The proposed method contains a two-stage neural network. Firstly, a preliminary confidence map of different anatomical structures is produced by a coarse segmentation stage. Secondly, a refinement segmentation stage is proposed to refine and optimize the coarse segmentation map. To model the spatial and morphological relationship between trigeminal nerve and cerebrovascular structures, the proposed network detects the trigeminal nerve, cerebrovasculature, and brainstem simultaneously. The method has been evaluated on a dataset including 50 MRA volumes, and the experimental results show the state-of-the-art performance of the proposed method with an average Dice similarity coefficient, Hausdorff distance, and average surface distance error of 0.8645, 0.2414, and 0.4296 on multi-tissue segmentation, respectively.


Sign in / Sign up

Export Citation Format

Share Document