scholarly journals Mapping and identification of CsUp, a gene encoding an Auxilin-like protein, as a putative candidate gene for the upward-pedicel mutation (up) in cucumber

2019 ◽  
Vol 19 (1) ◽  
Author(s):  
Jingxian Sun ◽  
Tingting Xiao ◽  
Jingtao Nie ◽  
Yue Chen ◽  
Duo Lv ◽  
...  
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Xinglong Su ◽  
Yingying Liu ◽  
Lu Han ◽  
Zhaojian Wang ◽  
Mengyang Cao ◽  
...  

AbstractPlatycodin D and platycoside E are two triterpenoid saponins in Platycodon grandiflorus, differing only by two glycosyl groups structurally. Studies have shown β-Glucosidase from bacteria can convert platycoside E to platycodin D, indicating the potential existence of similar enzymes in P. grandiflorus. An L9(34) orthogonal experiment was performed to establish a protocol for calli induction as follows: the optimal explant is stems with nodes and the optimum medium formula is MS + NAA 1.0 mg/L + 6-BA 0.5 mg/L to obtain callus for experimental use. The platycodin D, platycoside E and total polysaccharides content between callus and plant organs varied wildly. Platycodin D and total polysaccharide content of calli was found higher than that of leaves. While, platycoside E and total polysaccharide content of calli was found lower than that of leaves. Associating platycodin D and platycoside E content with the expression level of genes involved in triterpenoid saponin biosynthesis between calli and leaves, three contigs were screened as putative sequences of β-Glucosidase gene converting platycoside E to platycodin D. Besides, we inferred that some transcription factors can regulate the expression of key enzymes involved in triterpernoid saponins and polysaccharides biosynthesis pathway of P. grandiflorus. Totally, a candidate gene encoding enzyme involved in converting platycoside E to platycodin D, and putative genes involved in polysaccharide synthesis in P. grandiflorus had been identified. This study will help uncover the molecular mechanism of triterpenoid saponins biosynthesis in P. grandiflorus.


2000 ◽  
Vol 11 (1) ◽  
pp. 31-36 ◽  
Author(s):  
Irma S. Lantinga-van Leeuwen ◽  
Jan A. Mol ◽  
Hans S. Kooistra ◽  
Ad Rijnberk ◽  
Matthew Breen ◽  
...  

2021 ◽  
Author(s):  
Zhicheng Hu ◽  
Xueyin Shi ◽  
Xuemiao Chen ◽  
Jing Zheng ◽  
Aiai Zhang ◽  
...  

Abstract Seed coat color is related to flavonoid content which is closely related to seed dormancy. According to the genetic analysis of a six-generation population derived from two parents (IC2508 with a yellow seed coat and IC2518 with a brown seed coat), we discovered that the yellow seed coat trait in melon was controlled by a single dominant gene, named CmBS-1. Bulked segregant analysis sequencing (BSA-Seq) revealed that the gene was located at 11,860,000–15,890,000 bp (4.03 Mb) on Chr 6. The F2 population was genotyped using insertion-deletions (InDels), from which cleaved amplified polymorphic sequence (dCAPS) markers were derived to construct a genetic map. The gene was then fine-mapped to a 233.98 kb region containing 12 genes. Based on gene sequence analysis with two parents, we found that the MELO3C019554 gene encoding a homeobox protein (PHD transcription factor) had a nonsynonymous single nucleotide polymorphism (SNP) mutation in the coding sequence (CDS), and the SNP mutation resulted in the conversion of an amino acid (A→T) at residue 534. In addition, MELO3C019554 exhibited lower relative expression levels in the yellow seed coat than in the brown seed coat. Furthermore, we found that MELO3C019554 was related to 12 flavonoid metabolites. Thus, we predicted that MELO3C019554 is a candidate gene controlling seed coat color in melon. The study lays a foundation for further cloning projects and functional analysis of this gene, as well as marker-assisted selection breeding.


2005 ◽  
Vol 6 (4) ◽  
pp. 290-297 ◽  
Author(s):  
P Choi ◽  
D Xanthaki ◽  
S J Rose ◽  
M Haywood ◽  
H Reiser ◽  
...  

2007 ◽  
Vol 19 (3) ◽  
pp. 275-284 ◽  
Author(s):  
J. -L. Molina-Cano ◽  
M. Moralejo ◽  
M. Elía ◽  
P. Muñoz ◽  
J. R. Russell ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document