scholarly journals Activities of leaf and spike carbohydrate-metabolic and antioxidant enzymes are linked with yield performance in three spring wheat genotypes grown under well-watered and drought conditions

2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Sajid Shokat ◽  
Dominik K. Großkinsky ◽  
Thomas Roitsch ◽  
Fulai Liu
2019 ◽  
Vol 52 (2) ◽  
Author(s):  
Sonia Munir ◽  
Muhammad Azmat ◽  
Farooq Ahmad Khan ◽  
usman Saleem ◽  
Salman Saleem ◽  
...  

Agronomy ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 689
Author(s):  
Yuksel Kaya

Climate change scenarios reveal that Turkey’s wheat production area is under the combined effects of heat and drought stresses. The adverse effects of climate change have just begun to be experienced in Turkey’s spring and the winter wheat zones. However, climate change is likely to affect the winter wheat zone more severely. Fortunately, there is a fast, repeatable, reliable and relatively affordable way to predict climate change effects on winter wheat (e.g., testing winter wheat in the spring wheat zone). For this purpose, 36 wheat genotypes in total, consisting of 14 spring and 22 winter types, were tested under the field conditions of the Southeastern Anatolia Region, a representative of the spring wheat zone of Turkey, during the two cropping seasons (2017–2018 and 2019–2020). Simultaneous heat (>30 °C) and drought (<40 mm) stresses occurring in May and June during both growing seasons caused drastic losses in winter wheat grain yield and its components. Declines in plant characteristics of winter wheat genotypes, compared to those of spring wheat genotypes using as a control treatment, were determined as follows: 46.3% in grain yield, 23.7% in harvest index, 30.5% in grains per spike and 19.4% in thousand kernel weight, whereas an increase of 282.2% in spike sterility occurred. On the other hand, no substantial changes were observed in plant height (10 cm longer than that of spring wheat) and on days to heading (25 days more than that of spring wheat) of winter wheat genotypes. In general, taller winter wheat genotypes tended to lodge. Meanwhile, it became impossible to avoid the combined effects of heat and drought stresses during anthesis and grain filling periods because the time to heading of winter wheat genotypes could not be shortened significantly. In conclusion, our research findings showed that many winter wheat genotypes would not successfully adapt to climate change. It was determined that specific plant characteristics such as vernalization requirement, photoperiod sensitivity, long phenological duration (lack of earliness per se) and vulnerability to diseases prevailing in the spring wheat zone, made winter wheat difficult to adapt to climate change. The most important strategic step that can be taken to overcome these challenges is that Turkey’s wheat breeding program objectives should be harmonized with the climate change scenarios.


2013 ◽  
Vol 13 (4) ◽  
pp. 234-240 ◽  
Author(s):  
Giovani Benin ◽  
Lindolfo Storck ◽  
Volmir Sérgio Marchioro ◽  
Francisco de Assis Franco ◽  
Ivan Schuster ◽  
...  

The aim of this study was to verify whether using the Papadakis method improves model assumptions and experimental accuracy in field trials used to determine grain yield for wheat lineages indifferent Value for Cultivation and Use (VCU) regions. Grain yield data from 572 field trials at 31 locations in the VCU Regions 1, 2, 3 and 4 in 2007-2011 were used. Each trial was run with and without the use of the Papadakis method. The Papadakis method improved the indices of experimental precision measures and reduced the number of experimental repetitions required to predict grain yield performance among the wheat genotypes. There were differences among the wheat adaptation regions in terms of the efficiency of the Papadakis method, the adjustment coefficient of the genotype averages and the increases in the selective accuracy of grain yield.


2020 ◽  
pp. 1
Author(s):  
Khem Pant ◽  
Bishnu Ojha ◽  
Dhruba Thapa ◽  
Raju Kharel ◽  
Nutan Gautam ◽  
...  

2015 ◽  
Vol 47 (4) ◽  
pp. 49-63 ◽  
Author(s):  
A.A. Khan ◽  
M.R. Kabir

Abstract Twenty five spring wheat genotypes were evaluated for terminal heat stress tolerance in field environments in the Agro Ecological Zone-11 of Bangladesh, during 2009-2010 cropping season. The experiments were conducted at Wheat Research Centre, Bangladesh Agricultural Research Institute, using randomized block design with three replicates under non-stress (optimum sowing) and stress (late sowing) conditions. Seven selection indices for stress tolerance including mean productivity (MP), geometric mean productivity (GMP), tolerance (TOL), yield index (YI), yield stability index (YSI), stress tolerance index (STI) and stress susceptibility index (SSI) were calculated based on grain yield of wheat under optimum and late sowing conditions. The results revealed significant variations due to genotypes for all characters in two sowing conditions. Principal component analysis revealed that the first PCA explained 0.64 of the variation with MP, GMP, YI and STI. Using MP, GMP, YI and STI, the genotypes G-05 and G-22 were found to be the best genotypes with relatively high yield and suitable for both optimum and late heat stressed conditions. The indices SSI, YSI and TOL could be useful parameters in discriminating the tolerant genotypes (G-12, G-13, and G-14) that might be recommended for heat stressed conditions. It is also concluded from the present studies that biomass, grain filling rate and spikes number m-2 are suitable for selecting the best genotypes under optimum and late sowing conditions because these parameters are highly correlated with MP, GMP, YI and STI. However, high ground cover with long pre heading stage and having high grain filling rate would made a genotype tolerant to late heat to attain a high grain yield in wheat.


Agronomy ◽  
2016 ◽  
Vol 6 (2) ◽  
pp. 29 ◽  
Author(s):  
Juan Herrera ◽  
Christos Noulas ◽  
Peter Stamp ◽  
Didier Pellet

Sign in / Sign up

Export Citation Format

Share Document