scholarly journals Development and validation of a fourteen- innate immunity-related gene pairs signature for predicting prognosis head and neck squamous cell carcinoma

BMC Cancer ◽  
2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Fujun Zhang ◽  
Yu Liu ◽  
Yixin Yang ◽  
Kai Yang

Abstract Background Immune-related genes is closely related to the occurrence and prognosis of head and neck squamous cell carcinoma (HNSCC). At the same time, immune-related genes have great potential as prognostic markers in many types of cancer. The prognosis of HNSCC is still poor currently, and it may be effective to predict the clinical outcome of HNSCC by immunogenic analysis. Methods RNASeq and clinical follow-up information were downloaded from The Cancer Genome Atlas (TCGA), the MINiML format GSE65858 chip expression data was downloaded from NCBI, and immune-related genes was downloaded from the InnateDB database. Immune-related genes in 519 HNSC patients were integrated from TCGA dataset. By using multivariate COX analysis and Lasso regression, robust immune-related gene pairs (IRGPs) that predict clinical outcomes of HNSCC were identified. Finally, a risk prognostic model related to immune gene pair was established and verified by clinical features, test sets and GEO external validation set. Results A total of 699 IRGPs were significantly correlated with the prognosis of HNSCC patients. Fourteen robust IRGPs were finally obtained by Lasso regression and a prognostic risk prediction model was constructed. Risk score of each sample were calculated based on Risk models and divided into the high-risk group (Risk-H) and low Risk group (Risk-L). Risk models were able to stratify the risk in patients with TNM Stage, Age, gender, and smoking history, and the AUC > 0.65 in training set and test set, shows that 14-IRGPs signature in patients with HNSCC has excellent classification performance. In addition, 14-IRGPs had the highest average C index compared with the prognostic characteristics and T, N, and Age of the 3 previously reported HNSCC. Conclusion This study constructed 14-IRGPs as a novel prognostic marker for predicting survival in HNSCC patients.

2021 ◽  
Author(s):  
Haimei Qin ◽  
Junli Wang ◽  
Biyun Liao ◽  
Zhonglin Liu ◽  
Rong Wang

Abstract Background: Head and neck squamous cell carcinoma (HNSCC) is most diagnosed at an advanced stage with poor prognosis. Single gene biomarkers cannot have enough predictive ability in HNSCC. Glycolysis participating in cancers was verified. Thus, this study aimed to identify glycolysis-related gene signature predict the outcome of HNSCC. Methods: The mRNA expression data of HNSCC downloaded The Cancer Genome Atlas (TCGA) project was analyzed by Gene Set Enrichment Analysis (GSEA). We use the Cox proportional regression model to construct a prognostic model. Kaplan–Meier and receiver operating characteristic (ROC) curves were employed to estimate the signature. We also analyzed the relationship of the signature and cancer subtypes. Results: We identified nine glycolysis-related genes including G6PD, EGFR, ALDH2, GPR87, STC2, PDK3, ELF3, STC1 and GNPDA1 as prognosis-related genes signature in HNSCC. HNSCC patients were divided into high and low risk group according to the signature. High risk group showed more poor prognosis and the risk score can precisely predict the prognosis of HNSCC. Additionally, the signature also can be used in cancer subtypes. Conclusion: This study established the 9-mRNA glycolysis signature which may serve as a prospective biomarker for prognosis and novel treatment target in HNSCC.


2021 ◽  
Vol 12 ◽  
Author(s):  
Yi Zhang ◽  
Ping Chen ◽  
Qiang Zhou ◽  
Hongyan Wang ◽  
Qingquan Hua ◽  
...  

The immune response within the tumor microenvironment plays a key role in tumorigenesis and determines the clinical outcomes of head and neck squamous cell carcinoma (HNSCC). However, to date, very limited robust and reliable immunological biomarkers have been developed that are capable of estimating prognosis in HNSCC patients. In this study, we aimed to identify the effects of novel immune-related gene signatures (IRGs) that can predict HNSCC prognosis. Based on gene expression profiles and clinical data of HNSCC patient cohorts from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) database, a total of 439 highly variable expressed immune-related genes (including 239 upregulated and 200 downregulated genes) were identified by using differential gene expression analysis. Pathway enrichment analysis indicated that these immune-related differentially expressed genes were enriched in inflammatory functions. After process screening in the training TCGA cohort, six immune-related genes (PLAU, STC2, TNFRSF4, PDGFA, DKK1, and CHGB) were significantly associated with overall survival (OS) based on the LASSO Cox regression model. Integrating these genes with clinicopathological features, a multivariable model was built and suggested better performance in determining patients’ OS in the testing cohort, and the independent validation cohort. In conclusion, a well-established model encompassing both immune-related gene signatures and clinicopathological factors would serve as a promising tool for the prognostic prediction of HNSCC.


2006 ◽  
Vol 67 (3) ◽  
pp. 196-203 ◽  
Author(s):  
Judith Reinders ◽  
Erik H. Rozemuller ◽  
Kevin J.W. van der Ven ◽  
Sophie Caillat-Zucman ◽  
Pieter J. Slootweg ◽  
...  

2021 ◽  
Vol 11 ◽  
Author(s):  
Ying Li ◽  
Li Zhu ◽  
Hongmin Yao ◽  
Ye Zhang ◽  
Xiangyu Kong ◽  
...  

BackgroundInflammation-related gene polymorphisms are some of the most important determinants for cancer susceptibility, clinical phenotype diversity, and the response to radiotherapy and chemotherapy. However, the relationship between these polymorphisms and head and neck squamous cell carcinoma (HNSCC) remains unclear. The aim of this study was to investigate the role of inflammation-related gene polymorphisms in the developmental risk and radiotherapy sensitivity of HNSCC.MethodsThe Matrix-Assisted Laser Desorption Ionization Time of Flight (MALDI-TOF) genotyping system was used to genotype 612 individuals from a Chinese population for 28 inflammation-related gene polymorphisms.ResultsThe protein kinase B (AKT1) rs1130233 TT, dominance model (CT+TT vs. CC), recessive model (TT vs. CT+CC), and rs2494732 CC genotypes were associated with reduced risk of HNSCC (P=0.014; P=0.041; P=0.043). The polymeric immunoglobulin receptor (PIGR) rs291097 GA, dominance model (GA+AA vs. GG), and rs291102 dominance model (GA+AA vs. GG) were associated with increased risk of HNSCC (P=0.025; P=0.025; P=0.040). The interleukin-4 receptor-α (IL-4RA) rs1801275 AA genotype was significantly correlated with increased radiotherapy sensitivity of HNSCC patients (P=0.030). In addition, age ≤ 60 years, non-smoker status, and normal levels of squamous cell carcinoma antigen (SCC) were found to be associated with increased radiotherapy sensitivity of HNSCC patients (P=0.033; P=0.033; P=0.030).ConclusionThe AKT1 rs1130233, AKT1 rs2494732, PIGR rs291097, and PIGR rs291102 polymorphisms were significantly related to the risk of HNSCC. The IL-4RA rs1801275 polymorphism, age ≤ 60 years, non-smoker status, and normal levels of SCC were significantly associated with increased radiotherapy sensitivity of HNSCC.


2021 ◽  
Vol 12 ◽  
Author(s):  
Wei Lu ◽  
Yihua Wu ◽  
Shengyun Huang ◽  
Dongsheng Zhang

Head and neck squamous cell carcinoma (HNSCC) is one of the most common cancers worldwide and has a high mortality. Ferroptosis, an iron-dependent form of programmed cell death, plays a crucial role in tumor suppression and chemotherapy resistance in cancer. However, the prognostic and clinical values of ferroptosis-related genes (FRGs) in HNSCC remain to be further explored. In the current study, we constructed a ferroptosis-related prognostic model based on the Cancer Genome Atlas database and then explored its prognostic and clinical values in HNSCC via a series of bioinformatics analyses. As a result, we built a four-gene prognostic signature, including FTH1, BNIP3, TRIB3, and SLC2A3. Survival analysis showed that the high-risk group presented significantly poorer overall survival than the low-risk group. Moreover, the ferroptosis-related signature was found to be an independent prognostic predictor with high accuracy in survival prediction for HNSCC. According to immunity analyses, we found that the low-risk group had higher anti-tumor immune infiltration cells and higher expression of immune checkpoint molecules and meanwhile corelated more closely with some anti-tumor immune functions. Meanwhile, all the above results were validated in the independent HSNCC cohort GSE65858. Besides, the signature was found to be remarkably correlated with sensitivity of common chemotherapy drugs for HNSCC patients and the expression levels of signature genes were also significantly associated with drug sensitivity to cancer cells. Overall, we built an effective ferroptosis-related prognostic signature, which could predict the prognosis and help clinicians to perform individualized treatment strategy for HNSCC patients.


Sign in / Sign up

Export Citation Format

Share Document