scholarly journals Hypoxia mediated pulmonary edema: potential influence of oxidative stress, sympathetic activation and cerebral blood flow

2015 ◽  
Vol 15 (1) ◽  
Author(s):  
Shadi Khademi ◽  
Melinda A. Frye ◽  
Kimberly M. Jeckel ◽  
Thies Schroeder ◽  
Eric Monnet ◽  
...  
Hypertension ◽  
2014 ◽  
Vol 63 (6) ◽  
pp. 1302-1308 ◽  
Author(s):  
Andrew T. Del Pozzi ◽  
Christopher E. Schwartz ◽  
Deepali Tewari ◽  
Marvin S. Medow ◽  
Julian M. Stewart

2020 ◽  
Vol 27 (6) ◽  
pp. 463-475 ◽  
Author(s):  
Lucas M. Kangussu ◽  
Lucas Alexandre Santos Marzano ◽  
Cássio Ferraz Souza ◽  
Carolina Couy Dantas ◽  
Aline Silva Miranda ◽  
...  

Cerebrovascular Diseases (CVD) comprise a wide spectrum of disorders, all sharing an acquired or inherited alteration of the cerebral vasculature. CVD have been associated with important changes in systemic and tissue Renin-Angiotensin System (RAS). The aim of this review was to summarize and to discuss recent findings related to the modulation of RAS components in CVD. The role of RAS axes is more extensively studied in experimentally induced stroke. By means of AT1 receptors in the brain, Ang II hampers cerebral blood flow and causes tissue ischemia, inflammation, oxidative stress, cell damage and apoptosis. On the other hand, Ang-(1-7) by stimulating Mas receptor promotes angiogenesis in brain tissue, decreases oxidative stress, neuroinflammation, and improves cognition, cerebral blood flow, neuronal survival, learning and memory. In regard to clinical studies, treatment with Angiotensin Converting Enzyme (ACE) inhibitors and AT1 receptor antagonists exerts preventive and therapeutic effects on stroke. Besides stroke, studies support a similar role of RAS molecules also in traumatic brain injury and cerebral aneurysm. The literature supports a beneficial role for the alternative RAS axis in CVD. Further studies are necessary to investigate the therapeutic potential of ACE2 activators and/or Mas receptor agonists in patients with CVD.


2020 ◽  
Vol 16 (S2) ◽  
Author(s):  
Nancy E. Ruiz‐Uribe ◽  
Oliver Bracko ◽  
Madison Swallow ◽  
Muhammad Ali ◽  
Brendah N. Njiru ◽  
...  

2016 ◽  
Vol 22 (7) ◽  
pp. 548-559 ◽  
Author(s):  
Christina E. Kure ◽  
Franklin L. Rosenfeldt ◽  
Andrew B. Scholey ◽  
Andrew Pipingas ◽  
David M. Kaye ◽  
...  

Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 3639-3639 ◽  
Author(s):  
Min Hui Cui ◽  
Henny H Billett ◽  
Sandra Suzuka ◽  
Kamalakar Ambadipudi ◽  
Caterina P. Minniti ◽  
...  

Abstract Introduction: Fetal hemoglobin (HbF) inhibits the deoxygenation-induced polymerization of sickle hemoglobin (HbS), the underlying pathophysiology of sickle cell disease (SCD). Higher HbF levels are associated with reduced sickle related pathology (Lettre G, Bauer DE. The Lancet 2016; 387(10037): 2554-64.). A major therapeutic approach to SCD has been to try to increase HbF levels, primarily by hydroxyurea administration. While hydroxyurea improves HbF and reduces sickling, its mechanism of action remains controversial, and even less is known regarding its effects on sickle-related cerebral pathology. We studied transgenic Berkeley sickle mice (BERK) (Paszty C et. al., Science 1997; 278(5339): 876-8.) with different HbF levels using in vivo MRI in an effort to estimate the ameliorative effects of HbF on cerebral blood flow and brain inflammation. Methods: BERK mice, expressing exclusively human a- and bS-globins with low (LF, n=7), medium (MF, n=8) and high (HF, n=6) HbF levels were studied at 9.4 T MRI system under isoflurane anesthesia. C57BL/6J mice were used as controls (n=9). We measured whole-brain cerebral blood flow (CBF-WB) using MRI. Diffusion tensor imaging was used to measure whole-brain mean diffusivity (MD-WB), a measure of brain edema and inflammation, and white matter fractional anisotropy (FA-WM) a biomarker of neuropathology. Tail vein blood was employed to obtain hematological parameters prior to MRI. Results: Select MRI and related data are shown in Table 1. BERK-LF mice (~3% HbF) exhibited lower mean cell hemoglobin concentration (MCHC) and hematocrit (Hct) compared with C57BL mice. BERK-MF mice (~20% HbF) showed increased MCHC compared with BERK-LF mice. BERK-HF mice (~30% HbF) had the highest MCHC and Hct of all BERK mice, but MCHC was still lower than levels seen in C57BL mice. The low MCHC and Hct levels in BERK-LF mice were associated with high CBF and MD . CBF was significantly elevated in BERK-LF and BERK-MF mice by 130% and 120%, respectively, compared to C57BL mice. BERK-HF mice, on the other hand, exhibited normalized CBF (187.0±27.5 vs. 180.0±30.5 ml/100g/min, BERK-HF vs. C57BL respectively), despite lower MCHC and Hct levels compared to C57BL mice. Brain inflammation (elevated MD levels) were also observed in BERK-LF mice compared to controls. In contrast, BERK-MF and BERK-HF mice showed reduced MD; both were significantly lower than BERK-LF mice and not different from control. Only the BERK-LF demonstrated significantly lower FA values (reduced microstructuraly complexity) compared to controls. CBF in all mice (BERK and C57BL) was inversely related to Hct (r=-0.433, p=0.019) and MCHC (r=-0.527, p=0.003). However, when controls were excluded from this analysis, only HbF level significantly predicted CBF (r=-0.485, p=0.030) and MD (r=-0.636, p=0.003), shown in Figure 1. HbF level also positively predicted MCHC (r=0.832, p<0.0001) and Hct (r=0.448, p=0.042) in BERK mice. Conclusions: Cerebral perfusion is markedly elevated in BERK mice compared to C57BL control mice and is inversely correlated with Hct, MCHC and total fetal Hb level. These data suggest that increased HbF can significantly reduce CBF, and in our study CBF levels in high-gamma BERK (~30%) were indistinguishable from control CBF, despite the lower Hct levels. We also demonstrate that brain edema, as reflected in lower MD, is improved when HbF levels reach ~20%. The improved CBF and reduced edema with higher HbF may be due to several factors: an antisickling effect on HbS, reduced oxidative stress, improved NO activity, and improved blood oxygen carrying capacity. HbF levels approaching 30% improved CBF, improved FA and reduced MD, suggesting that increased HbF levels may reduce cerebral insults stemming from cerebral hyperemia. These data suggest that new therapeutic approaches to further increase HbF to even higher levels than that achieved with hydroxyurea may provide greater hematologic and neuropathologic improvements in patients with SCD. If hydroxyuyrea induced HbF increases cannot be further improved, additional or combined therapeutic approaches (such as Pegylated Hb) may be combined with HbF therapies to improve oxygen delivery, reduce oxidative stress and reduce CBF toward normal levels. Disclosures No relevant conflicts of interest to declare.


2021 ◽  
Author(s):  
Jessica Youwakim ◽  
Diane Vallerand ◽  
Helene Girouard

Abstract Hypertension, a multifactorial chronic inflammatory condition, is a risk factor for neurodegenerative diseases including stroke and Alzheimer’s disease. These diseases have been associated with higher concentration of blood interleukin (IL)-17A. However, the role that IL-17A plays in the relationship between hypertension and brain remains misunderstood. Cerebral blood flow regulation may be the crossroads of these conditions. Hypertension alters cerebral blood flow regulation including neurovascular coupling (NVC). In the present study, the effects of IL-17A on NVC in the context of hypertension induced by angiotensin (Ang) II will be examined. Our results show that the neutralization of IL-17A or the specific inhibition of its receptor prevent the Ang II- induced NVC impairment. These treatments reduce the Ang II-induced cerebral oxidative stress. Tempol and NOX-2 depletion prevent NVC impairment induced by IL-17A. These findings suggest that IL-17A, through superoxide anion production, is an important mediator of cerebrovascular dysregulation induced by Ang II.


2017 ◽  
Vol 49 (5S) ◽  
pp. 826-827
Author(s):  
Jasdeep Kaur ◽  
Takuro Washio ◽  
Jennifer R. Vranish ◽  
Benjamin E. Young ◽  
R. Matthew Brothers ◽  
...  

2015 ◽  
Vol 119 (4) ◽  
pp. 363-373 ◽  
Author(s):  
Sara E. Hartmann ◽  
Xavier Waltz ◽  
Christine K. Kissel ◽  
Lian Szabo ◽  
Brandie L. Walker ◽  
...  

Acute hypoxia increases cerebral blood flow (CBF) and ventilation (V̇e). It is unknown if these responses are impacted with normal aging, or in patients with enhanced oxidative stress, such as (COPD). The purpose of the study was to 1) investigate the effects of aging and COPD on the cerebrovascular and ventilatory responses to acute hypoxia, and 2) to assess the effect of vitamin C on these responses during hypoxia. In 12 Younger, 14 Older, and 12 COPD, we measured peak cerebral blood flow velocity (V̄p; index of CBF), and V̇e during two 5-min periods of acute isocapnic hypoxia, under conditions of 1) saline-sham; and 2) intravenous vitamin C. Antioxidants [vitamin C, superoxide dismutase (SOD), glutathione peroxidase, and catalase], oxidative stress [malondialdehyde (MDA) and advanced protein oxidation product], and nitric oxide metabolism end products (NOx) were measured in plasma. Following the administration of vitamin C, vitamin C, SOD, catalase, and MDA increased, while NOx decreased. V̄p and V̇e sensitivity to hypoxia was reduced in Older by ∼60% ( P < 0.02). COPD patients exhibited similar V̄p and V̇e responses to Older ( P > 0.05). Vitamin C did not have an effect on the hypoxic V̇e response but selectively decreased the V̄p sensitivity in Younger only. These findings suggest a reduced integrative reflex (i.e., cerebrovascular and ventilatory) during acute hypoxemia in healthy older adults. Vitamin C does not appear to have a large influence on the cerebrovascular or ventilatory responses during acute hypoxia.


Author(s):  
William E. Hughes ◽  
Joe Hockenberry ◽  
Bradley Miller ◽  
Andrey Sorokin ◽  
Andreas M. Beyer

Cerebral blood flow and perfusion are tightly maintained through autoregulation despite changes in transmural pressure. Oxidative stress impairs cerebral blood flow, precipitating cerebrovascular events. Phosphorylation of the adaptor protein p66Shc increases mitochondrial-derived oxidative stress. The effect of p66Shc gain or loss of function in non-hypertensive rats is unclear. We hypothesized that p66Shc gain of function would impair autoregulation of cerebral microcirculation under physiological and pathological conditions. Three previously established transgenic (salt-sensitive background; SS) p66Shc rats were utilized, p66-Del/SS (express p66Shc with a 9-amino acid deletion), p66Shc-KO/SS (frameshift premature termination codon), and p66Shc-S36A/SS (substitution of Ser36Ala). The p66Shc-Del were also bred on Sprague-Dawley backgrounds (p66-Del/SD), and a subset was exposed to a hypertensive stimulus (L-NAME) for 4 weeks. Active and passive diameters to increasing transmural pressure were measured and myogenic tone was calculated. Myogenic responses to increasing pressure were impaired in p66Shc-Del/SS rats relative to WT/SS and knock-in substitution of S36A (P<0.05). p66-Del/SD rats did not demonstrate changes in active/passive diameters or myogenic tone relative to WT/SD, but did demonstrate attenuated passive diameter responses to higher transmural pressure relative to p66-Del/SS. 4 weeks of a hypertensive stimulus (L-NAME) did not alter active or passive diameter responses to increasing transmural pressure (P=0.86-0.99), but increased myogenic responses relative to p66-Del/SD (P<0.05). Collectively, we demonstrate the functional impact of modulation of p66Shc within the cerebral circulation and demonstrate that the genetic background of p66Shc rats largely drives changes in cerebrovascular function.


Sign in / Sign up

Export Citation Format

Share Document