scholarly journals Dual-section versus conventional archwire for en-masse retraction of anterior teeth with direct skeletal anchorage: a finite element analysis

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Ryo Hamanaka ◽  
Daniele Cantarella ◽  
Luca Lombardo ◽  
Lorena Karanxha ◽  
Massimo Del Fabbro ◽  
...  

Abstract Background The aim of this study is to compare the biomechanical effects of the conventional 0.019 × 0.025-in stainless steel archwire with the dual-section archwire when en-masse retraction is performed with sliding mechanics and skeletal anchorage. Methods Models of maxillary dentition equipped with the 0.019 × 0.025-in archwire and the dual-section archwire, whose anterior portion is 0.021 × 0.025-in and posterior portion is 0.018 × 0.025-in were constructed. Then, long-term tooth movement during en-masse retraction was simulated using the finite element method. Power arms of 8, 10, 12 and 14 mm length were employed to control anterior torque, and retraction forces of 2 N were applied with a direct skeletal anchorage. Results For achieving bodily movement of the incisors, power arms longer than 14 mm were required for the 0.019 × 0.025-in archwire, while between 8 and 10 mm for the dual-section archwire. The longer the power arms, the greater the counter-clockwise rotation of the occlusal plane was produced. Frictional resistance generated between the archwire and brackets and tubes on the posterior teeth was smaller than 5% of the retraction force of 2 N. Conclusions The use of dual-section archwire might bring some biomechanical advantages as it allows to apply retraction force at a considerable lower height, and with a reduced occlusal plane rotation, compared to the conventional archwire. Clinical studies are needed to confirm the present results.

2016 ◽  
Vol 87 (4) ◽  
pp. 549-555 ◽  
Author(s):  
David Lee ◽  
Giseon Heo ◽  
Tarek El-Bialy ◽  
Jason P. Carey ◽  
Paul W. Major ◽  
...  

ABSTRACT Objective: To investigate initial forces acting on teeth around the arch during en masse retraction using an in vitro Orthodontic SIMulator (OSIM). Materials and Methods: The OSIM was used to represent the full maxillary arch in a case wherein both first premolars had been extracted. Dental and skeletal anchorage to a posted archwire and skeletal anchorage to a 10-mm power arm were all simulated. A 0.019 × 0.025-inch stainless steel archwire was used in all cases, and 15-mm light nickel-titanium springs were activated to approximately 150 g on both sides of the arch. A sample size of n = 40 springs were tested for each of the three groups. Multivariate analysis of variance (α = 0.05) was used to determine differences between treatment groups. Results: In the anterior segment, it was found that skeletal anchorage with power arms generated the largest retraction force (P < .001). The largest vertical forces on the unit were generated using skeletal anchorage, followed by skeletal anchorage with power arms, and finally dental anchorage. Power arms were found to generate larger intrusive forces on the lateral incisors and extrusive forces on the canines than on other groups. For the posterior anchorage unit, dental anchorage generated the largest protraction and palatal forces. Negligible forces were measured for both skeletal anchorage groups. Vertical forces on the posterior unit were minimal in all cases (<0.1 N). Conclusions: All retraction methods produced sufficient forces to retract the anterior teeth during en masse retraction. Skeletal anchorage reduced forces on the posterior teeth but introduced greater vertical forces on the anterior teeth.


2021 ◽  
Vol 11 (9) ◽  
pp. 3824
Author(s):  
Ioana-Andreea Sioustis ◽  
Mihai Axinte ◽  
Marius Prelipceanu ◽  
Alexandra Martu ◽  
Diana-Cristala Kappenberg-Nitescu ◽  
...  

Finite element analysis studies have been of interest in the field of orthodontics and this is due to the ability to study the stress in the bone, periodontal ligament (PDL), teeth and the displacement in the bone by using this method. Our study aimed to present a method that determines the effect of applying orthodontic forces in bodily direction on a healthy and reduced periodontium and to demonstrate the utility of finite element analysis. Using the cone-beam computed tomography (CBCT) of a patient with a healthy and reduced periodontium, we modeled the geometric construction of the contour of the elements necessary for the study. Afterwards, we applied a force of 1 N and a force of 0.8 N in order to achieve bodily movement and to analyze the stress in the bone, in the periodontal ligament and the absolute displacement. The analysis of the applied forces showed that a minimal ligament thickness is correlated with the highest value of the maximum stress in the PDL and a decreased displacement. This confirms the results obtained in previous clinical practice, confirming the validity of the simulation. During orthodontic tooth movement, the morphology of the teeth and of the periodontium should be taken into account. The effect of orthodontic forces on a particular anatomy could be studied using FEA, a method that provides real data. This is necessary for proper treatment planning and its particularization depends on the patient’s particular situation.


2017 ◽  
Vol 22 (5) ◽  
pp. 47-55 ◽  
Author(s):  
A. Sumathi Felicita

ABSTRACT Objective: The aim of the present study was to clarify the biomechanics of en-masse retraction of the upper anterior teeth and attempt to quantify the different forces and moments generated using mini-implants and to calculate the amount of applied force optimal for en-masse intrusion and retraction using mini-implants. Methods: The optimum force required for en-masse intrusion and retraction can be calculated by using simple mathematical formulae. Depending on the position of the mini-implant and the relationship of the attachment to the center of resistance of the anterior segment, different clinical outcomes are encountered. Using certain mathematical formulae, accurate measurements of the magnitude of force and moment generated on the teeth can be calculated for each clinical outcome. Results: Optimum force for en-masse intrusion and retraction of maxillary anterior teeth is 212 grams per side. Force applied at an angle of 5o to 16o from the occlusal plane produce intrusive and retraction force components that are within the physiologic limit. Conclusion: Different clinical outcomes are encountered depending on the position of the mini-implant and the length of the attachment. It is possible to calculate the forces and moments generated for any given magnitude of applied force. The orthodontist can apply the basic biomechanical principles mentioned in this study to calculate the forces and moments for different hypothetical clinical scenarios.


2013 ◽  
Vol 461 ◽  
pp. 993-1001
Author(s):  
Wen Wen Deng ◽  
Fang Wang ◽  
Ferdinand M. Machibya ◽  
Shang Gao ◽  
Xiao Long Wang ◽  
...  

Introduction: An en-masse retraction with mini implant (MI) anchorage may be associated with unwanted intrusion/extrusion and uncontrolled tipping of anterior teeth. An optimum combination of MIs and hooks heights is required for proper treatment results. Materials and Methods: Maxillary finite element models were constructed from a cone beam CT scan of a patient’s orofacial region. The initial tooth displacement at 200g force with 0.019 × 0.025-in stainless steel working archwires engaged in 0.022 brackets slot was assessed. The three-dimensional displacement was examined at various MI and AAH heights. Results: The lower MI position caused extrusion of the central incisors, but the teeth were intruded at higher (6- and 8-mm) MI heights. While the shorter (2- and 4-mm) hooks extruded the central incisors, the higher (6- and 8-mm) intruded the teeth. The higher MI and hooks reduced the palatal tipping of central incisors. The distobucal cusp of the first molar was intruded, while the mesiobucal cusp was extruded in all models: Nonetheless, the shorter hooks and low MI had small molar tipping effects. Conclusions: The higher MIs caused intrusion and less palatal tipping of the central incisors crowns. The increase in hook height resulted into extrusion and reduction in palatal tipping of the central incisors crowns.


2017 ◽  
Vol 7 ◽  
pp. 267-272
Author(s):  
Beril Demir Karamanli ◽  
Hülya Kılıçoğlu ◽  
Armağan Fatih Karamanli

Aims The aim of this study was to evaluate the biomechanical effects on the craniofacial complex of skeletal anchorage and dental anchorage during face mask therapy. Subjects and Methods Two nonlinear finite element (FE) simulations were performed using a three-dimensional FE model. Face mask therapy with dental anchorage in the upper canines and face mask therapy with skeletal anchorage in the piriform apertures of the maxilla were simulated. In both simulations, the magnitude of the applied force was 750 g per side, and the force direction was 30° forward and downward relative to the occlusal plane. Results The circummaxillary sutures showed greater and more uniform stresses in the skeletal anchorage model than the dental anchorage model. This is the result of the more parallel forward movement of the maxilla in the skeletal anchorage model. Conclusions In Class III malocclusions with maxillary deficiency, for improved effects on the maxilla, choosing skeletal anchorage may be more effective in face mask therapies


2011 ◽  
Vol 2011 ◽  
pp. 1-8 ◽  
Author(s):  
Pavankumar Janardan Vibhute

In severely protrusive patients, skeletal anchorage from miniscrew is often used to avoid anchorage loss with preferred miniscrew location near centre of resistance (Cres) of posterior teeth. Biomechanical requirement for directing retraction force towards Cres of posterior teeth demands the insertion of miniscrew in loose mucosa, where risk of infection and failure increases. In addition, undesirable biomechanical side effects on anterior and posterior segments may be possible in all three planes, when continuous arch sliding mechanics are installed with miniscrew anchorage. This paper describes technique of molar-stabilizing power arm (MSPA) for simultaneous intrusion and retraction of anteriors with miniscrew placement at attached gingiva between 1st molar and 2nd premolar. Advantages of this technique include (i) the need of miniscrews placement in loose mucosa apically near the Cres of the posterior teeth is eliminated, (ii) the risk of infection and miniscrew failure is lowered since the miniscrew is placed in attached gingiva rather than the loose mucosa, and (iii) by adjusting vertical length or replacing MSPA, alteration of the retraction force vector is possible in all three planes; thus, need of removal and repositioning of the miniscrew (e.g., in correction of occlusal cant) can be eliminated.


2019 ◽  
Vol 90 (2) ◽  
pp. 255-262 ◽  
Author(s):  
Sung-Seo Mo ◽  
Min-Ki Noh ◽  
Seong-Hun Kim ◽  
Kyu-Rhim Chung ◽  
Gerald Nelson

ABSTRACT Objectives: To evaluate, using the finite element method (FEM), the factors that allow control of the anterior teeth during en masse retraction with the Biocreative hybrid retractor (CH-retractor) using different sizes of nickel-titanium (NiTi) archwires and various gable bends on the stainless-steel (SS) archwires. Materials and Methods: Using FEM, the anterior archwire section, engaged on the anterior dentition, was modeled in NiTi, and another assembly, the posterior guiding archwire, was modeled in SS. Two dimensions (0.016 × 0.022- and 0.017 × 0.025-inch NiTi) of the anterior archwires and different degrees (0°, 15°, 30°, 45°, and 60°) of the gable bends on the guiding wire were applied to the CH-retractor on the anterior segment to evaluate torque and intrusion with 100-g retraction force to TSADs. Finite element analysis permitted sophisticated analysis of anterior tooth displacement. Results: With a 0° gable bend all anterior teeth experienced extrusion. The canines showed a larger amount of extrusion than did the central and lateral incisors. With a gable bend of >15°, all anterior teeth exhibited intrusion. Bodily movement of the central incisor required a 30°∼45° gable bend when using anterior segments of 0.016 × 0.022-inch NiTi and 15°∼30° gable bend with the 0.017 × 0.025-inch NiTi. Conclusions: With the CH-retractor, varying the size of the NiTi archwire and/or varying the amount of gable bend on the SS archwire affects control of the anterior teeth during en masse retraction without a posterior appliance.


Sign in / Sign up

Export Citation Format

Share Document