scholarly journals Validation of the anti-infective potential of a polyherbal ‘Panchvalkal’ preparation, and elucidation of the molecular basis underlining its efficacy against Pseudomonas aeruginosa

Author(s):  
Chinmayi Joshi ◽  
Pooja Patel ◽  
Hanmanthrao Palep ◽  
Vijay Kothari
eLife ◽  
2013 ◽  
Vol 2 ◽  
Author(s):  
Bridget R Kulasekara ◽  
Cassandra Kamischke ◽  
Hemantha D Kulasekara ◽  
Matthias Christen ◽  
Paul A Wiggins ◽  
...  

Individual cell heterogeneity is commonly observed within populations, although its molecular basis is largely unknown. Previously, using FRET-based microscopy, we observed heterogeneity in cellular c-di-GMP levels. In this study, we show that c-di-GMP heterogeneity in Pseudomonas aeruginosa is promoted by a specific phosphodiesterase partitioned after cell division. We found that subcellular localization and reduction of c-di-GMP levels by this phosphodiesterase is dependent on the histidine kinase component of the chemotaxis machinery, CheA, and its phosphorylation state. Therefore, individual cell heterogeneity in c-di-GMP concentrations is regulated by the activity and the asymmetrical inheritance of the chemotaxis organelle after cell division. c-di-GMP heterogeneity results in a diversity of motility behaviors. The generation of diverse intracellular concentrations of c-di-GMP by asymmetric partitioning is likely important to the success and survival of bacterial populations within the environment by allowing a variety of motility behaviors.


2021 ◽  
Author(s):  
Qin Chen ◽  
Kelei Zhao ◽  
Heyue Li ◽  
Kanghua Liu ◽  
Jing Li ◽  
...  

Abstract Background: Trueperella pyogenes and Pseudomonas aeruginosa are two important bacterial pathogens closely relating to the occurrence and development of forest musk deer respiratory purulent disease. Although T. pyogenes is the causative agent of the disease, the subsequently invaded P. aeruginosa will predominate the infection by producing a substantial amount of quorum-sensing (QS)-controlled virulence factors, and co-infection of them usually creates serious difficulties for veterinary treatment. In order to find a potential drug that targets both T. pyogenes and P. aeruginosa, the antibacterial and anti-virulence capacities of 55 compounds, which have similar core structure to the signal molecules of P. aeruginosa QS system, were tested in this study. By performing a series of in vitro screening experiments to assess the effects of these compounds.Results: We identified that furazolidone could significantly inhibit the growth of mono-cultured T. pyogenes or in the co-culture with P. aeruginosa. Although the growth of P. aeruginosa could also be moderately inhibited by furazolidone, the results of phenotypic identification and transcriptomic analysis further revealed that furazolidone had remarkable inhibitory effect on the biofilm production, motility, and QS system of P. aeruginosa. Moreover, furazolidone could efficiently protect Caenorhabditis elegans from P. aeruginosa infection under both fast-killing and slow-killing conditions.Conclusions: This study reports the antibacterial and anti-virulence abilities of furazolidone on T. pyogenes and P. aeruginosa, and provides a promising strategy and molecular basis for the development of novel anti-infectious drugs to dealing with forest musk deer purulent disease, or other diseases caused by T. pyogenes and P. aeruginosa co-infection.


2006 ◽  
Vol 188 (8) ◽  
pp. 3149-3152 ◽  
Author(s):  
Iain L. Lamont ◽  
Lois W. Martin ◽  
Talia Sims ◽  
Amy Scott ◽  
Mary Wallace

ABSTRACT Strains of Pseudomonas aeruginosa secrete one of three pyoverdine siderophores (types I to III). We have characterized a gene, pvdY II (for the pvdY gene present in type II P. aeruginosa strains), that is only present in strains that make type II pyoverdine. A mutation in pvdY II prevented pyoverdine synthesis. Bioinformatic, genetic, and biochemical approaches indicate that the PvdYII enzyme catalyzes acetylation of hydroxyornithine. Expression of pvdY II is repressed by the presence of iron and upregulated by the presence of type II pyoverdine. Characterization of pvdY II provides insights into the molecular basis for production of different pyoverdines by different strains of P. aeruginosa.


2015 ◽  
Vol 17 (37) ◽  
pp. 23867-23876 ◽  
Author(s):  
Susruta Samanta ◽  
Mariano Andrea Scorciapino ◽  
Matteo Ceccarelli

The dynamics and interplay of internal and external loops create two alternative paths for the permeation of substrates through the specific outer membrane channel OprD.


2020 ◽  
Vol 3 (1) ◽  
Author(s):  
Tao Li ◽  
Lihui He ◽  
Changcheng Li ◽  
Mei Kang ◽  
Yingjie Song ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document