scholarly journals The hidden genomic diversity of ciliated protists revealed by single-cell genome sequencing

BMC Biology ◽  
2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Wenbing Chen ◽  
Changling Zuo ◽  
Chundi Wang ◽  
Tengteng Zhang ◽  
Liping Lyu ◽  
...  

Abstract Background Ciliated protists are a widely distributed, morphologically diverse, and genetically heterogeneous group of unicellular organisms, usually known for containing two types of nuclei: a transcribed polyploid macronucleus involved in gene expression and a silent diploid micronucleus responsible for transmission of genetic material during sexual reproduction and generation of the macronucleus. Although studies in a few species of culturable ciliated protists have revealed the highly dynamic nature of replicative and recombination events relating the micronucleus to the macronucleus, the broader understanding of the genomic diversity of ciliated protists, as well as their phylogenetic relationships and metabolic potential, has been hampered by the inability to culture numerous other species under laboratory conditions, as well as the presence of symbiotic bacteria and microalgae which provide a challenge for current sequencing technologies. Here, we optimized single-cell sequencing methods and associated data analyses, to effectively remove contamination by commensal bacteria, and generated high-quality genomes for a number of Euplotia species. Results We obtained eight high-quality Euplotia genomes by using single-cell genome sequencing techniques. The genomes have high genomic completeness, with sizes between 68 and 125 M and gene numbers between 14K and 25K. Through comparative genomic analysis, we found that there are a large number of gene expansion events in Euplotia genomes, and these expansions are closely related to the phenotypic evolution and specific environmental adaptations of individual species. We further found four distinct subgroups in the genus Euplotes, which exhibited considerable genetic distance and relative lack of conserved genomic syntenies. Comparative genomic analyses of Uronychia and its relatives revealed significant gene expansion associated with the ciliary movement machinery, which may be related to the unique and strong swimming ability. Conclusions We employed single-cell genomics to obtain eight ciliate genomes, characterized the underestimated genomic diversity of Euplotia, and determined the divergence time of representative species in this subclass for the first time. We also further investigated the extensive duplication events associated with speciation and environmental adaptation. This study provides a unique and valuable resource for understanding the evolutionary history and genetic diversity of ciliates.

2018 ◽  
Vol 6 (19) ◽  
pp. e00383-18 ◽  
Author(s):  
David K. Ngugi ◽  
Ulrich Stingl

ABSTRACT Candidate division SA1 encompasses a phylogenetically coherent archaeal group ubiquitous in deep hypersaline anoxic brines around the globe. Recently, the genome sequences of two cultivated representatives from hypersaline soda lake sediments were published. Here, we present a single-cell genome sequence from Nereus Deep in the Red Sea that represents a putatively novel family within SA1.


Author(s):  
S. Bhattacharya ◽  
J. Lillis ◽  
C. Baker ◽  
M. Guo ◽  
J.R. Myers ◽  
...  

2021 ◽  
Author(s):  
Gabriel H. Negreira ◽  
Pieter Monsieurs ◽  
Hideo Imamura ◽  
Ilse Maes ◽  
Nada Kuk ◽  
...  

Leishmania, a unicellular eukaryotic parasite, is a unique model for aneuploidy and cellular heterogeneity, along with their potential role in adaptation to environmental stresses. Somy variation within clonal populations was previously explored in a small subset of chromosomes using fluorescence hybridization methods. This phenomenon, termed mosaic aneuploidy (MA) might have important evolutionary and functional implications, but remains under-explored due to technological limitations. Here, we applied and validated a high throughput single-cell genome sequencing method to study for the first time the extent and dynamics of whole karyotype heterogeneity in two Leishmania clonal populations representing different stages of MA evolution in vitro. We found that drastic changes in karyotypes quickly emerge in a population stemming from an almost euploid founder cell. This possibly involves polyploidization/hybridization at an early stage of population expansion, followed by assorted ploidy reduction. During further stages of expansion, MA increases by moderate and gradual karyotypic alterations. MA usually affected a defined subset of chromosomes, of which some display enrichment in snoRNA genes which could represent an adaptative benefit to the amplification of these chromosomes. Our data provide the first complete characterization of MA in Leishmania and pave the way for further functional studies.


2017 ◽  
Vol 1 (3) ◽  
pp. 249-255 ◽  
Author(s):  
Robert M. Bowers ◽  
Devin F.R. Doud ◽  
Tanja Woyke

Single-cell genome sequencing of individual archaeal and bacterial cells is a vital approach to decipher the genetic makeup of uncultured microorganisms. With this review, we describe single-cell genome analysis with a focus on the unique properties of single-cell sequence data and with emphasis on quality assessment and assurance.


Cell ◽  
2019 ◽  
Vol 179 (5) ◽  
pp. 1207-1221.e22 ◽  
Author(s):  
Emma Laks ◽  
Andrew McPherson ◽  
Hans Zahn ◽  
Daniel Lai ◽  
Adi Steif ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document