scholarly journals Cytotoxicity and cell cycle arrest induced by andrographolide lead to programmed cell death of MDA-MB-231 breast cancer cell line

2016 ◽  
Vol 23 (1) ◽  
Author(s):  
Malabika Banerjee ◽  
Subrata Chattopadhyay ◽  
Tathagata Choudhuri ◽  
Rammohan Bera ◽  
Sanjay Kumar ◽  
...  
2020 ◽  
Vol 5 (38) ◽  
pp. 11850-11853
Author(s):  
Anderson Roberto de Souza ◽  
Mona Stefany de Souza Castro ◽  
Thiago Olímpio de Souza ◽  
Rodrigo Cassio Sola Veneziani ◽  
Jairo Kenupp Bastos ◽  
...  

2012 ◽  
Vol 135 (2) ◽  
pp. 596-602 ◽  
Author(s):  
Josiana A. Vaz ◽  
Isabel C.F.R. Ferreira ◽  
Catarina Tavares ◽  
Gabriela M. Almeida ◽  
Anabela Martins ◽  
...  

Marine Drugs ◽  
2020 ◽  
Vol 18 (4) ◽  
pp. 195 ◽  
Author(s):  
Zhihua Sun ◽  
Jiaolin Bao ◽  
Manqi Zhangsun ◽  
Shuai Dong ◽  
Dongting Zhangsun ◽  
...  

The α9-containing nicotinic acetylcholine receptor (nAChR) is increasingly emerging as a new tumor target owing to its high expression specificity in breast cancer. αO-Conotoxin GeXIVA is a potent antagonist of α9α10 nAChR. Nevertheless, the anti-tumor effect of GeXIVA on breast cancer cells remains unclear. Cell Counting Kit-8 assay was used to study the cell viability of breast cancer MDA-MD-157 cells and human normal breast epithelial cells, which were exposed to different doses of GeXIVA. Flow cytometry was adopted to detect the cell cycle arrest and apoptosis of GeXIVA in breast cancer cells. Migration ability was analyzed by wound healing assay. Western blot (WB), quantitative real-time PCR (QRT-PCR) and flow cytometry were used to determine expression of α9-nAChR. Stable MDA-MB-157 breast cancer cell line, with the α9-nAChR subunit knocked out (KO), was established using the CRISPR/Cas9 technique. GeXIVA was able to significantly inhibit the proliferation and promote apoptosis of breast cancer MDA-MB-157 cells. Furthermore, the proliferation of breast cancer MDA-MB-157 cells was inhibited by GeXIVA, which caused cell cycle arrest through downregulating α9-nAChR. GeXIVA could suppress MDA-MB-157 cell migration as well. This demonstrates that GeXIVA induced a downregulation of α9-nAChR expression, and the growth of MDA-MB-157 α9-nAChR KO cell line was inhibited as well, due to α9-nAChR deletion. GeXIVA inhibits the growth of breast cancer cell MDA-MB-157 cells in vitro and may occur in a mechanism abolishing α9-nAChR.


Sign in / Sign up

Export Citation Format

Share Document