scholarly journals Enhanced production of recombinant proteins with Corynebacterium glutamicum by deletion of insertion sequences (IS elements)

2015 ◽  
Vol 14 (1) ◽  
Author(s):  
Jae Woong Choi ◽  
Sung Sun Yim ◽  
Min Jeong Kim ◽  
Ki Jun Jeong
2012 ◽  
Vol 58 (3) ◽  
pp. 278-286 ◽  
Author(s):  
Jae-Hyung Jo ◽  
Hye-Young Seol ◽  
Yun-Bom Lee ◽  
Min-Hong Kim ◽  
Hyung-Hwan Hyun ◽  
...  

The development of microbial strains for the enhanced production of α-ketoglutarate (α-KG) was investigated using a strain of Corynebacterium glutamicum that overproduces of l-glutamate, by disrupting three genes involved in the α-KG biosynthetic pathway. The pathways competing with the biosynthesis of α-KG were blocked by knocking out aceA (encoding isocitrate lyase, ICL), gdh (encoding glutamate dehydrogenase, l-gluDH), and gltB (encoding glutamate synthase or glutamate-2-oxoglutarate aminotransferase, GOGAT). The strain with aceA, gltB, and gdh disrupted showed reduced ICL activity and no GOGAT and l-gluDH activities, resulting in up to 16-fold more α-KG production than the control strain in flask culture. These results suggest that l-gluDH is the key enzyme in the conversion of α-KG to l-glutamate; therefore, prevention of this step could promote α-KG accumulation. The inactivation of ICL leads the carbon flow to α-KG by blocking the glyoxylate pathway. However, the disruption of gltB did not affect the biosynthesis of α-KG. Our results can be applied in the industrial production of α-KG by using C. glutamicum as producer.


2013 ◽  
Vol 7 (S6) ◽  
Author(s):  
Pierre-Alain Girod ◽  
Valérie Le Fourn ◽  
David Calabrese ◽  
Alexandre Regamey ◽  
Deborah Ley ◽  
...  

2021 ◽  
Author(s):  
Guoqiang Xu ◽  
Jiyue Wang ◽  
Luning Gu ◽  
Yaxin Zhu ◽  
Jian Zha ◽  
...  

Abstract Background Poly-γ-glutamic acid (γ-PGA) is a natural anionic biopolymer widely used in various fields, including medicine, food, cosmetics, and environmental protection. The γ-PGA synthase complex, CapBCA, is the only polyprotein complex responsible for γ-PGA synthesis. However, systematic and in-depth research on the function of each component involved in γ-PGA synthesis is scarce, which limits enhanced production of γ-PGA. Results To address this limitation, γ-PGA synthase components were localized, and their functions associated with γ-PGA synthesis were investigated in Corynebacterium glutamicum. Bioinformatics analysis and confocal microscopic observations of CapB-sfGFP, CapC-sfGFP, and CapA-sfGFP proteins revealed that γ-PGA synthase components CapB, CapC, and CapA were all localized on the cell membrane. More importantly, γ-PGA was detected only when CapB, CapC, and CapA were expressed in combination in C. glutamicum. Furthermore, enhancement of CapB or CapC transcription levels (from low to high) and maintaining medium-level CapA transcription led to 35.44% and 76.53% increase in γ-PGA yield (γ-PGA yield-to-biomass), respectively. However, maintaining medium-level CapB and CapC transcription, and moderate enhancement of CapA transcription level (from low to medium) led to 35.01% increase in γ-PGA yield, whereas a further increase in CapA expression (from medium to high) led to 10.36% decrease in γ-PGA yield. Notably, CapC had the greatest influence (accounting for 68.24%) on γ-PGA synthesis. Conclusions The present study determined the membrane localization of γ-PGA synthase components, CapB, CapC, and CapA, in C. glutamicum and confirmed the significance of these components in γ-PGA production. Furthermore, CapC was found to have the greatest influence on controlling γ-PGA synthesis. These findings shed light into the effect of γ-PGA synthase component expression on γ-PGA synthesis, and provide insights for further improvement in γ-PGA production.


Sign in / Sign up

Export Citation Format

Share Document