scholarly journals Heterologous expression of Spathaspora passalidarum xylose reductase and xylitol dehydrogenase genes improved xylose fermentation ability of Aureobasidium pullulans

2018 ◽  
Vol 17 (1) ◽  
Author(s):  
Jian Guo ◽  
Siyao Huang ◽  
Yefu Chen ◽  
Xuewu Guo ◽  
Dongguang Xiao
Fermentation ◽  
2020 ◽  
Vol 6 (3) ◽  
pp. 72
Author(s):  
Adriane Mouro ◽  
Angela A. dos Santos ◽  
Denis D. Agnolo ◽  
Gabriela F. Gubert ◽  
Elba P. S. Bon ◽  
...  

In recent years, many novel xylose-fermenting yeasts belonging to the new genus Spathaspora have been isolated from the gut of wood-feeding insects and/or wood-decaying substrates. We have cloned and expressed, in Saccharomyces cerevisiae, a Spathaspora arborariae xylose reductase gene (SaXYL1) that accepts both NADH and NADPH as co-substrates, as well as a Spathaspora passalidarum NADPH-dependent xylose reductase (SpXYL1.1 gene) and the SpXYL2.2 gene encoding for a NAD+-dependent xylitol dehydrogenase. These enzymes were co-expressed in a S. cerevisiae strain over-expressing the native XKS1 gene encoding xylulokinase, as well as being deleted in the alkaline phosphatase encoded by the PHO13 gene. The S. cerevisiae strains expressing the Spathaspora enzymes consumed xylose, and xylitol was the major fermentation product. Higher specific growth rates, xylose consumption and xylitol volumetric productivities were obtained by the co-expression of the SaXYL1 and SpXYL2.2 genes, when compared with the co-expression of the NADPH-dependent SpXYL1.1 xylose reductase. During glucose-xylose co-fermentation by the strain with co-expression of the SaXYL1 and SpXYL2.2 genes, both ethanol and xylitol were produced efficiently. Our results open up the possibility of using the advantageous Saccharomyces yeasts for xylitol production, a commodity with wide commercial applications in pharmaceuticals, nutraceuticals, food and beverage industries.


2020 ◽  
Vol 43 (8) ◽  
pp. 1509-1519 ◽  
Author(s):  
Carolina I. D. G. Bonan ◽  
Luiz E. Biazi ◽  
Suzane R. Dionísio ◽  
Lauren B. Soares ◽  
Robson Tramontina ◽  
...  

2019 ◽  
Vol 19 (4) ◽  
Author(s):  
Débora Trichez ◽  
Andrei S Steindorff ◽  
Carlos E V F Soares ◽  
Eduardo F Formighieri ◽  
João R M Almeida

ABSTRACT Xylitol is a five-carbon polyol of economic interest that can be produced by microbial xylose reduction from renewable resources. The current study sought to investigate the potential of two yeast strains, isolated from Brazilian Cerrado biome, in the production of xylitol as well as the genomic characteristics that may impact this process. Xylose conversion capacity by the new isolates Spathaspora sp. JA1 and Meyerozyma caribbica JA9 was evaluated and compared with control strains on xylose and sugarcane biomass hydrolysate. Among the evaluated strains, Spathaspora sp. JA1 was the strongest xylitol producer, reaching product yield and productivity as high as 0.74 g/g and 0.20 g/(L.h) on xylose, and 0.58 g/g and 0.44 g/(L.h) on non-detoxified hydrolysate. Genome sequences of Spathaspora sp. JA1 and M. caribbica JA9 were obtained and annotated. Comparative genomic analysis revealed that the predicted xylose metabolic pathway is conserved among the xylitol-producing yeasts Spathaspora sp. JA1, M. caribbica JA9 and Meyerozyma guilliermondii, but not in Spathaspora passalidarum, an efficient ethanol-producing yeast. Xylitol-producing yeasts showed strictly NADPH-dependent xylose reductase and NAD+-dependent xylitol-dehydrogenase activities. This imbalance of cofactors favors the high xylitol yield shown by Spathaspora sp. JA1, which is similar to the most efficient xylitol producers described so far.


Sign in / Sign up

Export Citation Format

Share Document