scholarly journals Medium & long-chain acylcarnitine’s relation to lipid metabolism as potential predictors for diabetic cardiomyopathy: a metabolomic study

2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Dan-meng Zheng ◽  
Zhen-ni An ◽  
Ming-hao Ge ◽  
Dong-zhuo Wei ◽  
Ding-wen Jiang ◽  
...  

Abstract Background Acylcarnitine is an intermediate product of fatty acid oxidation. It is reported to be closely associated with the occurrence of diabetic cardiomyopathy (DCM). However, the mechanism of acylcarnitine affecting myocardial disorders is yet to be explored. This current research explores the different chain lengths of acylcarnitines as biomarkers for the early diagnosis of DCM and the mechanism of acylcarnitines for the development of DCM in-vitro. Methods In a retrospective non-interventional study, 50 simple type 2 diabetes mellitus patients and 50 DCM patients were recruited. Plasma samples from both groups were analyzed by high throughput metabolomics and cluster heat map using mass spectrometry. Principal component analysis was used to compare the changes occurring in the studied 25 acylcarnitines. Multivariable binary logistic regression was used to analyze the odds ratio of each group for factors and the 95% confidence interval in DCM. Myristoylcarnitine (C14) exogenous intervention was given to H9c2 cells to verify the expression of lipid metabolism-related protein, inflammation-related protein expression, apoptosis-related protein expression, and cardiomyocyte hypertrophy and fibrosis-related protein expression. Results Factor 1 (C14, lauroylcarnitine, tetradecanoyldiacylcarnitine, 3-hydroxyl-tetradecanoylcarnitine, arachidic carnitine, octadecanoylcarnitine, 3-hydroxypalmitoleylcarnitine) and factor 4 (octanoylcarnitine, hexanoylcarnitine, decanoylcarnitine) were positively correlated with the risk of DCM. Exogenous C14 supplementation to cardiomyocytes led to increased lipid deposition in cardiomyocytes along with the obstacles in adenosine 5′-monophosphate (AMP)-activated protein kinase (AMPK) signaling pathways and affecting fatty acid oxidation. This further caused myocardial lipotoxicity, ultimately leading to cardiomyocyte hypertrophy, fibrotic remodeling, and increased apoptosis. However, this effect was mitigated by the AMPK agonist acadesine. Conclusions The increased plasma levels in medium and long-chain acylcarnitine extracted from factors 1 and 4 are closely related to the risk of DCM, indicating that these factors can be an important tool for DCM risk assessment. C14 supplementation associated lipid accumulation by inhibiting the AMPK/ACC/CPT1 signaling pathway, aggravated myocardial lipotoxicity, increased apoptosis apart from cardiomyocyte hypertrophy and fibrosis were alleviated by the acadesine.

Diabetes ◽  
2021 ◽  
Vol 70 (Supplement 1) ◽  
pp. 379-P
Author(s):  
KESHAV GOPAL ◽  
QUTUBA G. KARWI ◽  
SEYED AMIRHOSSEIN TABATABAEI DAKHILI ◽  
CORY S. WAGG ◽  
RICCARDO PERFETTI ◽  
...  

2016 ◽  
Vol 119 (suppl_1) ◽  
Author(s):  
Tariq R Altamimi ◽  
Arata Fukushima ◽  
Liyan Zhang ◽  
Su Gao ◽  
Abhishek Gupta ◽  
...  

Impaired cardiac insulin signaling and high cardiac fatty acid oxidation rates are characteristics of diabetic cardiomyopathy. Potential roles for liver-derived metabolic factors in mediating cardiac energy homeostasis are underappreciated. Plasma levels of adropin, a liver secreted peptide, increase during feeding and decrease during fasting and diabetes. In skeletal muscle, adropin preferentially promotes glucose over fatty acid oxidation. We therefore determined what effect adropin has on cardiac energy metabolism, insulin signaling and cardiac efficiency. C57Bl/6 mice were fasted to accentuate the differences in adropin plasma levels between animals injected 3 times over 24 hr with either vehicle or adropin (450 nmol/kg i.p.). Despite fasting-induced predominance of fatty acid oxidation measured in isolated working hearts, insulin inhibition of fatty acid oxidation was re-established in adropin-treated mice (from 1022±143 to 517±56 nmol. g dry wt -1 . min -1 , p <0.05) compared to vehicle-treated mice (from 757±104 to 818±103 nmol. g dry wt -1 . min -1 ). Adropin-treated mice hearts showed higher cardiac work over the course of perfusion (p<0.05 vs. vehicle), which was accompanied by improved cardiac efficiency and enhanced phosphorylation of insulin signaling enzymes (tyrosine-IRS-1, AS160, p<0.05). Acute addition of adropin (2nM) to isolated working hearts from non-fasting mice showed a robust stimulation of glucose oxidation compared to vehicle-treated hearts (3025±401 vs 1708±292 nmol. g dry wt -1 . min -1 , p<0.05, respectively) with a corresponding inhibition of palmitate oxidation (325±61 vs 731±160 nmol. g dry wt -1 . min -1 , p<0.05, respectively), even in the presence of insulin. Acute adropin addition to hearts also increased IRS-1 tyrosine-phosphorylation as well as Akt, and GSK3β phosphorylation (p<0.05), suggesting acute receptor- and/or post-translational modification-mediated mechanisms. These results suggest adropin as a putative candidate for the treatment of diabetic cardiomyopathy.


Cell Reports ◽  
2018 ◽  
Vol 23 (11) ◽  
pp. 3300-3311 ◽  
Author(s):  
Linford J.B. Briant ◽  
Michael S. Dodd ◽  
Margarita V. Chibalina ◽  
Nils J.G. Rorsman ◽  
Paul R.V. Johnson ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document