scholarly journals The neuroprotective effect of pretreatment with carbon dots from Crinis Carbonisatus (carbonized human hair) against cerebral ischemia reperfusion injury

2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Yue Zhang ◽  
Suna Wang ◽  
Fang Lu ◽  
Meiling Zhang ◽  
Hui Kong ◽  
...  

Abstract Background Cerebral infarction and cerebral hemorrhage, also known as “stroke”, is one of the leading cause of death. At present, there is no real specific medicine for stroke. Crinis Carbonisatus (named Xue-yu-tan in Chinese), produced from carbonized hair of healthy human, and has been widely applied to relieve pain and treat epilepsy, stroke and other diseases in China for thousands of years. Results In this work, a new species of carbon dots derived from Crinis Carbonisatus (CrCi-CDs) were separated and identified. And the neuroprotective effect of carbon dots from CrCi were evaluated using the middle cerebral artery occlusion (MCAO) model. Neurological deficit score and infarction volume was assessed, evans blue content of ischemic hemispheres was measured, the concentrations of inflammatory factors, tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6) in the cortex were measured, and the levels of neurotransmitters in the brain were determined. Preconditioning of CrCi-CDs significantly reduced ischemic lesion volume and blood–brain-barrier (BBB) permeability, improved neurologic deficits, decreased the level of TNF-α and IL-6 in MCAO rats, inhibited excitatory neurotransmitters aspartate (Asp) and glutamate (Glu), and increased the level of 5-hydroxytryptamine (5-HT). The RNA-Sequencing results reveal that further potential mechanisms behind the activities may be related to the anti-inflammation effects and inhibition of neuroexcitatory toxicity. Conclusion CrCi-CDs performs neuroprotective effect on cerebral ischemia and reperfusion injury, and the mechanisms may correlate with its anti-inflammatory action, which suggested that CrCi-CDs have potential value in clinical therapy on the acute apoplexy cases in combination with thrombolytic drugs. Graphic abstract

2001 ◽  
Vol 21 (6) ◽  
pp. 683-689 ◽  
Author(s):  
John S. Beech ◽  
Jill Reckless ◽  
David E. Mosedale ◽  
David J. Grainger ◽  
Steve C. R. Williams ◽  
...  

Cerebral ischemia–reperfusion injury is associated with a developing inflammatory response with pathologic contributions from vascular leukocytes and endogenous microglia. Signaling chemokines orchestrate the communication between the different inflammatory cell types and the damaged tissue leading to cellular chemotaxis and lesion occupation. Several therapies aimed at preventing this inflammatory response have demonstrated neuroprotective efficacy in experimental models of stroke, but to date, few investigators have used the chemokines as potential therapeutic targets. In the current study, the authors investigate the neuroprotective action of NR58–3.14.3, a novel broad-spectrum inhibitor of chemokine function (both CXC and CC types), in a rat model of cerebral ischemia–reperfusion injury. Rats were subjected to 90 minutes of focal ischemia by the filament method followed by 72 hours of reperfusion. Both the lesion volume, measured by serial magnetic resonance imaging, and the neurologic function were assessed daily. Intravenous NR58–3.14.3 was administered, 2 mg/kg bolus followed by 0.5 mg/kg · hour constant infusion for the entire 72-hour period. At 72 hours, the cerebral leukocytic infiltrate, tumor necrosis factor-α (TNF-α), and interleukin-8 (IL-8)-like cytokines were analyzed by quantitative immunofluorescence. NR58–3.14.3 significantly reduced the lesion volume by up to 50% at 24, 48, and 72 hours post–middle cerebral artery occlusion, which was associated with a marked functional improvement to 48 hours. In NR58–3.14.3-treated rats, the number of infiltrating granulocytes and macrophages within perilesional regions were reduced, but there were no detectable differences in inflammatory cell numbers within core ischemic areas. The authors reported increased expression of the cytokines, TNF-α, and IL-8–like cytokines within the ischemic lesion, but no differences between the NR58–3.14.3-treated rats and controls were reported. Although chemokines can have pro-or antiinflammatory action, these data suggest the overall effect of chemokine up-regulation and expression in ischemia–reperfusion injury is detrimental to outcome.


2021 ◽  
Vol 12 (1) ◽  
pp. 020-031
Author(s):  
Kong Fu ◽  
Miancong Chen ◽  
Hua Zheng ◽  
Chuanzi Li ◽  
Fan Yang ◽  
...  

Abstract Background Morbidity and mortality remain high for ischemic stroke victims, and at present these patients lack effective neuroprotective agents, which improve the cure rate. In recent years, studies have shown that pelargonidin has many biological actions. However, few studies are available regarding the pelargonidin treatment of cerebral ischemia. Methods The rat middle cerebral artery occlusion (MCAO) model was established to investigate the neuroprotective effect of pelargonidin on cerebral ischemia/reperfusion injury. Reperfusion was performed 2 h after ischemia; magnetic resonance imaging (MRI) and 2, 3, 5-triphenyltetrazolium chloride (TTC) staining were used to measure the volume of cerebral ischemia. Both modified neurological severity scores (mNSSs) and Morris water maze test were used to assess the neurological functions. ELISA was applied to determine the levels of TNF-α, TGF-β, IL-6, IL-10, MDA, and SOD. The expression of Nuclear factor-E2-related factor 2 (Nrf2) and heme oxygenase 1 (HO-1) protein in brain tissue was measured by immunofluorescence and Western blot assays. Results The results showed that pelargonidin could effectively reduce the volume of cerebral ischemia and improve the neurological function in MCAO rats, thereby improving memory and learning ability. With the corresponding decreases in the expression of TNF-α, TGF-β, IL-6, and MDA, the level of IL-10 and SOD increased and also promoted the nuclear metastasis of Nrf2 and the expression of HO-1 in ischemic brain tissues. Conclusions Our data demonstrated that pelargonidin ameliorated neurological function deficits in MCAO rats, and its potential mechanism of action was associated with overexpression of the Nrf2/HO-1-signaling pathway. This study will provide a new approach to treat cerebral ischemia/reperfusion injury.


Perfusion ◽  
2021 ◽  
pp. 026765912110070
Author(s):  
Yan Liu ◽  
Xuyao Zhu ◽  
Xiuxia Tong ◽  
Ziqiang Tan

Introduction: Cerebral ischemia/reperfusion injury (CI/R) is associated with high mortality and remains a large challenge in the clinic. Syringin is a bioactive compound with anti-inflammation, antioxidant, as well as neuroprotective effects. Nevertheless, whether syringin could protect against CI/R injury and its potential mechanism was still unclear. Methods: Rats were randomly divided into five groups: sham group, syringin group, CI/R group, CI/R + syringin group, and CI/R + syringin + LPS (TLR4 agonist) group. The CI/R injury rat model was established by the middle cerebral artery occlusion (MCAO). The learning and memory ability of rats was estimated by the Morris water maze test. Modified neurological severity score test (mNSS) and infarct volume were detected to assess the neuroprotective effect of syringin. ELISA and RT-qPCR were used to analyze the concentration of proinflammation cytokines and the expression of TLR4. Results: CI/R injury induced increased mNSS scores and decreased learning and memory ability of rats. Syringin could significantly protect against CI/R injury as it decreased the cerebral damage and improved the cognitive ability of CI/R rats. Moreover, syringin also reduced neuroinflammation of CI/R injury rats. Additionally, TLR4 was significantly upregulated in CI/R injury rats, which was suppressed by syringin. The activation of TLR4 reversed the neuroprotective effect of syringin in CI/R rats. Conclusion: Syringin decreased the inflammation reaction and cerebral damage in CI/R injury rats. The neuroprotective effect of syringin may be correlated with the inhibition of TLR4.


Sign in / Sign up

Export Citation Format

Share Document