scholarly journals Quantifying intracellular trafficking of silica-coated magnetic nanoparticles in live single cells by site-specific direct stochastic optical reconstruction microscopy

2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Suresh Kumar Chakkarapani ◽  
Tae Hwan Shin ◽  
Seungah Lee ◽  
Kyung-Soo Park ◽  
Gwang Lee ◽  
...  

Abstract Background Nanoparticles have been used for biomedical applications, including drug delivery, diagnosis, and imaging based on their unique properties derived from small size and large surface-to-volume ratio. However, concerns regarding unexpected toxicity due to the localization of nanoparticles in the cells are growing. Herein, we quantified the number of cell-internalized nanoparticles and monitored their cellular localization, which are critical factors for biomedical applications of nanoparticles. Methods This study investigates the intracellular trafficking of silica-coated magnetic nanoparticles containing rhodamine B isothiocyanate dye [MNPs@SiO2(RITC)] in various live single cells, such as HEK293, NIH3T3, and RAW 264.7 cells, using site-specific direct stochastic optical reconstruction microscopy (dSTORM). The time-dependent subdiffraction-limit spatial resolution of the dSTORM method allowed intracellular site-specific quantification and tracking of MNPs@SiO2(RITC). Results The MNPs@SiO2(RITC) were observed to be highly internalized in RAW 264.7 cells, compared to the HEK293 and NIH3T3 cells undergoing single-particle analysis. In addition, MNPs@SiO2(RITC) were internalized within the nuclei of RAW 264.7 and HEK293 cells but were not detected in the nuclei of NIH3T3 cells. Moreover, because of the treatment of the MNPs@SiO2(RITC), more micronuclei were detected in RAW 264.7 cells than in other cells. Conclusion The sensitive and quantitative evaluations of MNPs@SiO2(RITC) at specific sites in three different cells using a combination of dSTORM, transcriptomics, and molecular biology were performed. These findings highlight the quantitative differences in the uptake efficiency of MNPs@SiO2(RITC) and ultra-sensitivity, varying according to the cell types as ascertained by subdiffraction-limit super-resolution microscopy. Graphical Abstract

RSC Advances ◽  
2016 ◽  
Vol 6 (99) ◽  
pp. 96635-96643 ◽  
Author(s):  
Peng Zhao ◽  
Meng Cao ◽  
Lina Song ◽  
Hao Wu ◽  
Ke Hu ◽  
...  

MIM plays a positive role in the RAW 264.7 cellular endocytosis process of iron oxide nanoparticles mainly in clathrin-mediated pathway, which is a meaningful molecular basis for biomedical applications of nanomaterials.


2017 ◽  
Vol 27 (3) ◽  
pp. 616-623 ◽  
Author(s):  
Tran Xuan Ngoc Huy ◽  
Alisha Wehdnesday Bernardo Reyes ◽  
Huynh Tan Hop ◽  
Lauren Togonon Arayan ◽  
WonGi Min ◽  
...  

NANO ◽  
2014 ◽  
Vol 09 (02) ◽  
pp. 1450016 ◽  
Author(s):  
SAMER HASAN HUSSEIN-AL-ALI ◽  
PALANISAMY ARULSELVAN ◽  
MOHD ZOBIR HUSSEIN ◽  
SHARIDA FAKURAZI ◽  
MAZNAH ISMAIL ◽  
...  

Magnetic nanoparticles (MNPs) were prepared by the coprecipitation method using a molar ratio of Fe 3+: Fe 2+ of 2:1. The surface of MNP was coated with chitosan (CS) and polyethylene glycol (PEG) to form CS–MNP and PEG–MNP nanoparticles, respectively. Anthranilic acid (AA) was loaded on the surface of the resulting nanoparticles to form AA–CS–MNP and AA–PEG–MNP nanocomposites, respectively. The nanocomposites obtained were characterized using powder X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), thermogravimetry analysis (TGA), vibrating sample magnetometer (VSM) and scanning electron microscopy (SEM). XRD results showed that the as-synthesized nanocomposites are pure magnetite. FTIR results analysis indicated the existence of two polymers on the particle surface of the MNP and the presence of loaded AA on the surface of CS–MNP and PEG–MNP nanoparticles. Anthranilic acid loading and the release profiles of AA–CS–MNP and AA–PEG–MNP nanocomposites showed that up to 8.8% and 5.5% of the adsorbed drug were released in 670 min and 771 min, respectively. Anthranilic acid release profiles followed a pseudo-second-order kinetic controlled process. The cytotoxicity of the as-synthesized anthranilic acid nanocomposities were determined using MTT assay using murine macrophage RAW 264.7 cells. MTT results showed that the cytotoxic effects of AA–CS–MNP were higher than AA–PEG–MNP against the tested cells as compared to free anthranilic acid. In this manner, this study introduces novel anthranilic acid nanocomposites that can be used on-demand for biomedical applications.


Polymers ◽  
2021 ◽  
Vol 13 (23) ◽  
pp. 4146
Author(s):  
Dalal A. Alromi ◽  
Seyed Yazdan Madani ◽  
Alexander Seifalian

Cancer is a disease that has resulted in millions of deaths worldwide. The current conventional therapies utilized for the treatment of cancer have detrimental side effects. This led scientific researchers to explore new therapeutic avenues with an improved benefit to risk profile. Researchers have found nanoparticles, particles between the 1 and 100 nm range, to be encouraging tools in the area of cancer. Magnetic nanoparticles are one of many available nanoparticles at present. Magnetic nanoparticles have increasingly been receiving a considerable amount of attention in recent years owing to their unique magnetic properties, among many others. Magnetic nanoparticles can be controlled by an external magnetic field, signifying their ability to be site specific. The most popular approaches for the synthesis of magnetic nanoparticles are co-precipitation, thermal decomposition, hydrothermal, and polyol synthesis. The functionalization of magnetic nanoparticles is essential as it significantly increases their biocompatibility. The most utilized functionalization agents are comprised of polymers. The synthesis and functionalization of magnetic nanoparticles will be further explored in this review. The biomedical applications of magnetic nanoparticles investigated in this review are drug delivery, magnetic hyperthermia, and diagnosis. The diagnosis aspect focuses on the utilization of magnetic nanoparticles as contrast agents in magnetic resonance imaging. Clinical trials and toxicology studies relating to the application of magnetic nanoparticles for the diagnosis and treatment of cancer will also be discussed in this review.


NANO ◽  
2014 ◽  
Vol 09 (07) ◽  
pp. 1492004
Author(s):  
SAMER HASAN HUSSEIN-AL-ALI ◽  
PALANISAMY ARULSELVAN ◽  
MOHD ZOBIR HUSSEIN ◽  
SHARIDA FAKURAZI ◽  
MAZNAH ISMAIL ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document