scholarly journals Development and validation of a prognostic COVID-19 severity assessment (COSA) score and machine learning models for patient triage at a tertiary hospital

2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Verena Schöning ◽  
Evangelia Liakoni ◽  
Christine Baumgartner ◽  
Aristomenis K. Exadaktylos ◽  
Wolf E. Hautz ◽  
...  

Abstract Background Clinical risk scores and machine learning models based on routine laboratory values could assist in automated early identification of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) patients at risk for severe clinical outcomes. They can guide patient triage, inform allocation of health care resources, and contribute to the improvement of clinical outcomes. Methods In- and out-patients tested positive for SARS-CoV-2 at the Insel Hospital Group Bern, Switzerland, between February 1st and August 31st (‘first wave’, n = 198) and September 1st through November 16th 2020 (‘second wave’, n = 459) were used as training and prospective validation cohort, respectively. A clinical risk stratification score and machine learning (ML) models were developed using demographic data, medical history, and laboratory values taken up to 3 days before, or 1 day after, positive testing to predict severe outcomes of hospitalization (a composite endpoint of admission to intensive care, or death from any cause). Test accuracy was assessed using the area under the receiver operating characteristic curve (AUROC). Results Sex, C-reactive protein, sodium, hemoglobin, glomerular filtration rate, glucose, and leucocytes around the time of first positive testing (− 3 to + 1 days) were the most predictive parameters. AUROC of the risk stratification score on training data (AUROC = 0.94, positive predictive value (PPV) = 0.97, negative predictive value (NPV) = 0.80) were comparable to the prospective validation cohort (AUROC = 0.85, PPV = 0.91, NPV = 0.81). The most successful ML algorithm with respect to AUROC was support vector machines (median = 0.96, interquartile range = 0.85–0.99, PPV = 0.90, NPV = 0.58). Conclusion With a small set of easily obtainable parameters, both the clinical risk stratification score and the ML models were predictive for severe outcomes at our tertiary hospital center, and performed well in prospective validation.

2021 ◽  
Author(s):  
Verena Schöning ◽  
Evangelia Liakoni ◽  
Christine Baumgartner ◽  
Aristomenis K. Exadaktylos ◽  
Wolf E. Hautz ◽  
...  

Abstract Background: Clinical risk scores and machine learning models based on routine laboratory values could assist in automated early identification of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) patients at risk for severe clinical outcomes. They can guide patient triage, inform allocation of health care resources, and contribute to the improvement of clinical outcomes. Methods: In- and out-patients tested positive for SARS-CoV-2 at the Insel Hospital Group Bern, Switzerland, between February 1st and August 31st (‘first wave’, n=198) and September 1st through November 16th 2020 (‘second wave’, n=459) were used as training and prospective validation cohort, respectively. A clinical risk stratification score and machine learning (ML) models were developed using demographic data, medical history, and laboratory values taken up to three days before, or one day after, positive testing to predict severe outcomes of hospitalization (a composite endpoint of admission to intensive care, or death from any cause). Test accuracy was assessed using the area under the receiver operating characteristic curve (AUROC).Results: Sex, C-reactive protein, sodium, hemoglobin, glomerular filtration rate, glucose, and leucocytes around the time of first positive testing (‑3 to +1 days) were the most predictive parameters. AUROC of the risk stratification score on training data (AUROC = 0.94, positive predictive value (PPV) = 0.97, negative predictive value (NPV) = 0.80) were comparable to the prospective validation cohort (AUROC = 0.85, PPV = 0.91, NPV = 0.81). The most successful ML algorithm with respect to AUROC was support vector machines (median = 0.96, interquartile range = 0.85-0.99, PPV = 0.90, NPV = 0.58).Conclusion: With a small set of easily obtainable parameters, both the clinical risk stratification score and the ML models were predictive for severe outcomes at our tertiary hospital center, and performed well in prospective validation.


2020 ◽  
Author(s):  
William P.T.M. van Doorn ◽  
Patricia M. Stassen ◽  
Hella F. Borggreve ◽  
Maaike J. Schalkwijk ◽  
Judith Stoffers ◽  
...  

AbstractIntroductionPatients with sepsis who present to an emergency department (ED) have highly variable underlying disease severity, and can be categorized from low to high risk. Development of a risk stratification tool for these patients is important for appropriate triage and early treatment. The aim of this study was to develop machine learning models predicting 31-day mortality in patients presenting to the ED with sepsis and to compare these to internal medicine physicians and clinical risk scores.MethodsA single-center, retrospective cohort study was conducted amongst 1,344 emergency department patients fulfilling sepsis criteria. Laboratory and clinical data that was available in the first two hours of presentation from these patients were randomly partitioned into a development (n=1,244) and validation dataset (n=100). Machine learning models were trained and evaluated on the development dataset and compared to internal medicine physicians and risk scores in the independent validation dataset. The primary outcome was 31-day mortality.ResultsA number of 1,344 patients were included of whom 174 (13.0%) died. Machine learning models trained with laboratory or a combination of laboratory + clinical data achieved an area-under-the ROC curve of 0.82 (95% CI: 0.80-0.84) and 0.84 (95% CI: 0.81-0.87) for predicting 31-day mortality, respectively. In the validation set, models outperformed internal medicine physicians and clinical risk scores in sensitivity (92% vs. 72% vs. 78%;p<0.001,all comparisons) while retaining comparable specificity (78% vs. 74% vs. 72%;p>0.02). The model had higher diagnostic accuracy with an area-under-the-ROC curve of 0.85 (95%CI: 0.78-0.92) compared to abbMEDS (0.63,0.54-0.73), mREMS (0.63,0.54-0.72) and internal medicine physicians (0.74,0.65-0.82).ConclusionMachine learning models outperformed internal medicine physicians and clinical risk scores in predicting 31-day mortality. These models are a promising tool to aid in risk stratification of patients presenting to the ED with sepsis.


PLoS ONE ◽  
2021 ◽  
Vol 16 (1) ◽  
pp. e0245157
Author(s):  
William P. T. M. van Doorn ◽  
Patricia M. Stassen ◽  
Hella F. Borggreve ◽  
Maaike J. Schalkwijk ◽  
Judith Stoffers ◽  
...  

Introduction Patients with sepsis who present to an emergency department (ED) have highly variable underlying disease severity, and can be categorized from low to high risk. Development of a risk stratification tool for these patients is important for appropriate triage and early treatment. The aim of this study was to develop machine learning models predicting 31-day mortality in patients presenting to the ED with sepsis and to compare these to internal medicine physicians and clinical risk scores. Methods A single-center, retrospective cohort study was conducted amongst 1,344 emergency department patients fulfilling sepsis criteria. Laboratory and clinical data that was available in the first two hours of presentation from these patients were randomly partitioned into a development (n = 1,244) and validation dataset (n = 100). Machine learning models were trained and evaluated on the development dataset and compared to internal medicine physicians and risk scores in the independent validation dataset. The primary outcome was 31-day mortality. Results A number of 1,344 patients were included of whom 174 (13.0%) died. Machine learning models trained with laboratory or a combination of laboratory + clinical data achieved an area-under-the ROC curve of 0.82 (95% CI: 0.80–0.84) and 0.84 (95% CI: 0.81–0.87) for predicting 31-day mortality, respectively. In the validation set, models outperformed internal medicine physicians and clinical risk scores in sensitivity (92% vs. 72% vs. 78%;p<0.001,all comparisons) while retaining comparable specificity (78% vs. 74% vs. 72%;p>0.02). The model had higher diagnostic accuracy with an area-under-the-ROC curve of 0.85 (95%CI: 0.78–0.92) compared to abbMEDS (0.63,0.54–0.73), mREMS (0.63,0.54–0.72) and internal medicine physicians (0.74,0.65–0.82). Conclusion Machine learning models outperformed internal medicine physicians and clinical risk scores in predicting 31-day mortality. These models are a promising tool to aid in risk stratification of patients presenting to the ED with sepsis.


Author(s):  
Chenxi Huang ◽  
Shu-Xia Li ◽  
César Caraballo ◽  
Frederick A. Masoudi ◽  
John S. Rumsfeld ◽  
...  

Background: New methods such as machine learning techniques have been increasingly used to enhance the performance of risk predictions for clinical decision-making. However, commonly reported performance metrics may not be sufficient to capture the advantages of these newly proposed models for their adoption by health care professionals to improve care. Machine learning models often improve risk estimation for certain subpopulations that may be missed by these metrics. Methods and Results: This article addresses the limitations of commonly reported metrics for performance comparison and proposes additional metrics. Our discussions cover metrics related to overall performance, discrimination, calibration, resolution, reclassification, and model implementation. Models for predicting acute kidney injury after percutaneous coronary intervention are used to illustrate the use of these metrics. Conclusions: We demonstrate that commonly reported metrics may not have sufficient sensitivity to identify improvement of machine learning models and propose the use of a comprehensive list of performance metrics for reporting and comparing clinical risk prediction models.


2021 ◽  
Author(s):  
Xurui Jin ◽  
Yiyang Sun ◽  
Tinglong Zhu ◽  
Yu Leng ◽  
Shuyi Guan ◽  
...  

AbstractBackground and aimMortality risk stratification was vital for targeted intervention. This study aimed at building the prediction model of all-cause mortality among Chinese dwelling elderly with different methods including regression models and machine learning models and to compare the performance of machine learning models with regression model on predicting mortality. Additionally, this study also aimed at ranking the predictors of mortality within different models and comparing the predictive value of different groups of predictors using the model with best performance.MethodI used data from the sub-study of Chinese Longitudinal Healthy Longevity Survey (CLHLS) - Healthy Ageing and Biomarkers Cohort Study (HABCS). The baseline survey of HABCS was conducted in 2008 and covered similar domains that CLHLS has investigated and shared the sampling strategy. The follow-up of HABCS was conducted every 2-3 years till 2018.The analysis sample included 2,448 participants from HABCS. I used totally 117 predictors to build the prediction model for survival using the HABCS cohort, including 61 questionnaire, 41 biomarker and 15 genetics predictors. Four models were built (XG-Boost, random survival forest [RSF], Cox regression with all variables and Cox-backward). We used C-index and integrated Brier score (Brier score for the two years’ mortality prediction model) to evaluate the performance of those models.ResultsThe XG-Boost model and RSF model shows slightly better predictive performance than Cox models and Cox-backward models based on the C-index and integrated Brier score in predicting surviving. Age. Activity of daily living and Mini-Mental State Examination score were identified as the top 3 predictors in the XG-Boost and RSF models. Biomarker and questionnaire predictors have a similar predictive value, while genetic predictors have no addictive predictive value when combined with questionnaire or biomarker predictors.ConclusionIn this work, it is shown that machine learning techniques can be a useful tool for both prediction and its performance sightly outperformed the regression model in predicting survival.


2019 ◽  
pp. 1-11 ◽  
Author(s):  
David Chen ◽  
Gaurav Goyal ◽  
Ronald S. Go ◽  
Sameer A. Parikh ◽  
Che G. Ngufor

PURPOSE Time to event is an important aspect of clinical decision making. This is particularly true when diseases have highly heterogeneous presentations and prognoses, as in chronic lymphocytic lymphoma (CLL). Although machine learning methods can readily learn complex nonlinear relationships, many methods are criticized as inadequate because of limited interpretability. We propose using unsupervised clustering of the continuous output of machine learning models to provide discrete risk stratification for predicting time to first treatment in a cohort of patients with CLL. PATIENTS AND METHODS A total of 737 treatment-naïve patients with CLL diagnosed at Mayo Clinic were included in this study. We compared predictive abilities for two survival models (Cox proportional hazards and random survival forest) and four classification methods (logistic regression, support vector machines, random forest, and gradient boosting machine). Probability of treatment was then stratified. RESULTS Machine learning methods did not yield significantly more accurate predictions of time to first treatment. However, automated risk stratification provided by clustering was able to better differentiate patients who were at risk for treatment within 1 year than models developed using standard survival analysis techniques. CONCLUSION Clustering the posterior probabilities of machine learning models provides a way to better interpret machine learning models.


2019 ◽  
Vol 156 (6) ◽  
pp. S-64
Author(s):  
Dennis Shung ◽  
Benjamin Au ◽  
Richard A. Taylor ◽  
Kenneth Tay ◽  
Stig B. Laursen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document