scholarly journals Cardiovascular magnetic resonance-derived left ventricular mechanics—strain, cardiac power and end-systolic elastance under various inotropic states in swine

2020 ◽  
Vol 22 (1) ◽  
Author(s):  
A. Faragli ◽  
R. Tanacli ◽  
C. Kolp ◽  
D. Abawi ◽  
T. Lapinskas ◽  
...  

Abstract Background Cardiovascular magnetic resonance (CMR) strain imaging is an established technique to quantify myocardial deformation. However, to what extent left ventricular (LV) systolic strain, and therefore LV mechanics, reflects classical hemodynamic parameters under various inotropic states is still not completely clear. Therefore, the aim of this study was to investigate the correlation of LV global strain parameters measured via CMR feature tracking (CMR-FT, based on conventional cine balanced steady state free precession (bSSFP) images) with hemodynamic parameters such as cardiac index (CI), cardiac power output (CPO) and end-systolic elastance (Ees) under various inotropic states. Methods  Ten anaesthetized, healthy Landrace swine were acutely instrumented closed-chest and transported to the CMR facility for measurements. After baseline measurements, two steps were performed: (1) dobutamine-stress (Dobutamine) and (2) verapamil-induced cardiovascular depression (Verapamil). During each protocol, CMR images were acquired in the short axisand apical 2Ch, 3Ch and 4Ch views. MEDIS software was utilized to analyze global longitudinal (GLS), global circumferential (GCS), and global radial strain (GRS). Results Dobutamine significantly increased heart rate, CI, CPO and Ees, while Verapamil decreased them. Absolute values of GLS, GCS and GRS accordingly increased during Dobutamine infusion, while GLS and GCS decreased during Verapamil. Linear regression analysis showed a moderate correlation between GLS, GCS and LV hemodynamic parameters, while GRS correlated poorly. Indexing global strain parameters for indirect measures of afterload, such as mean aortic pressure or wall stress, significantly improved these correlations, with GLS indexed for wall stress reflecting LV contractility as the clinically widespread LV ejection fraction. Conclusion GLS and GCS correlate accordingly with LV hemodynamics under various inotropic states in swine. Indexing strain parameters for indirect measures of afterload substantially improves this correlation, with GLS being as good as LV ejection fraction in reflecting LV contractility. CMR-FT-strain imaging may be a quick and promising tool to characterize LV hemodynamics in patients with varying degrees of LV dysfunction.

2019 ◽  
Vol 40 (Supplement_1) ◽  
Author(s):  
P G Chew ◽  
L E Dobson ◽  
P Garg ◽  
F J L Richards ◽  
J R Foley ◽  
...  

Abstract Background Mitral valve (MV) repair is currently recommended over replacement (1). The guidelines suggesting this are however based on historic evidence which compared outdated techniques of MV replacement. Recent data cast doubts on its validity in the current era of chordal-preservation techniques in MV replacement. Purpose Using cardiovascular magnetic resonance (CMR) imaging, this study aimed to assess the impact of MV repair and MV replacement on cardiac left ventricular (LV) reverse remodelling. Methods 65 patients with moderate-severe and severe mitral regurgitation (MR) were prospectively recruited. Of these, 37 patients (59% men, 65±15 years) to date with paired CMR scans at baseline and at 6 months were evaluated. Patients either underwent MV repair (n=9), MV replacement (n=10) or watchful waiting (n=18). The CMR protocol included cines for left ventricle (LV), left atria (LA), and aortic flow assessment. The LA and LV parameters, and MR fraction were analysed. Results At 6 months, both the MV repair and replacement groups exhibited a reduction in LV end-diastolic volume (LVEDV) and LA volumes when compared to the control group. The indexed LVEDV decreased significantly from 129±33ml/m2 to 99±37ml/m2, p<0.001 in the repair group, from 118±24ml/m2 to 90±26ml/m2, p<0.001 in the replacement group and remained unchanged in the control group 115±25ml/m2 to 113±25ml/m2, p=0.53. The absolute reduction in indexed LVEDV was not significantly different between the repair and replacement groups (−30±15ml/m2 vs −29±19ml/m2, repair vs replacement, p=1.00). Similarly, both surgical groups also sustained an equal degree of LA size reduction (−42±26ml/m2 vs −36±23ml/m2, repair vs replacement; p=1.00). There was a decline in the global postoperative LV ejection fraction (Table 1). The degree of reduction in LV ejection fraction however did not differ between the repair and replacement group (−9±6% vs −6±8%, repair vs replacement; p=1.00). Those undergoing surgery experienced a significant reduction in their MR severity, although those with replacement had a more effective reduction in MR severity (MR fraction for repair: 47±9% to 15±10%, p<0.001 vs replacement: 41±13% to 5±4%, p<0.001). Conclusion MV surgery leads to atrial and left ventricular reverse remodelling, and a decline in global LV ejection fraction. In this small series, MV replacement with chordal preservation showed similar cardiac reverse remodelling benefits to MV repair. Although residual MR is often seen following repair, this did not lead to less favourable cardiac reverse remodelling. Acknowledgement/Funding Leeds NIHR infrastructure


2020 ◽  
Vol 9 (19) ◽  
Author(s):  
Ibolya Csecs ◽  
Farhad Pashakhanloo ◽  
Amanda Paskavitz ◽  
Jihye Jang ◽  
Talal Al‐Otaibi ◽  
...  

Background In patients with nonischemic cardiomyopathy, nonischemic fibrosis detected by late gadolinium enhancement (LGE) cardiovascular magnetic resonance is related to adverse cardiovascular outcomes. However, its relationship with left ventricular (LV) mechanical deformation parameters remains unclear. We sought to investigate the association between LV mechanics and the presence, location, and extent of fibrosis in patients with nonischemic cardiomyopathy. Methods and Results We retrospectively identified 239 patients with nonischemic cardiomyopathy (67% male; 55±14 years) referred for a clinical cardiovascular magnetic resonance. LGE was present in 109 patients (46%), most commonly (n=52; 22%) in the septum. LV deformation parameters did not differentiate between LGE‐positive and LGE‐negative groups. Global longitudinal, radial, and circumferential strains, twist and torsion showed no association with extent of fibrosis. Patients with septal fibrosis had a more depressed LV ejection fraction (30±12% versus 35±14%; P =0.032) and more impaired global circumferential strain (−7.9±3.5% versus −9.7±4.4%; P =0.045) and global radial strain (10.7±5.2% versus 13.3±7.7%; P =0.023) than patients without septal LGE. Global longitudinal strain was similar in both groups. While patients with septal‐only LGE (n=28) and free wall–only LGE (n=32) had similar fibrosis burden, the septal‐only LGE group had more impaired LV ejection fraction and global circumferential, longitudinal, and radial strains (all P <0.05). Conclusions There is no association between LV mechanical deformation parameters and presence or extent of fibrosis in patients with nonischemic cardiomyopathy. Septal LGE was associated with poor global LV function, more impaired global circumferential and radial strains, and more impaired global strain rates.


2017 ◽  
Vol 20 (1) ◽  
pp. 026 ◽  
Author(s):  
Nan Cheng ◽  
Liuquan Cheng ◽  
Rong Wang ◽  
Lin Zhang ◽  
Changqing Gao

Objective: The aim of this study was to quantify left ventricular torsion by newly applied cardiovascular magnetic resonance feature tracking (CMR-FT), and to evaluate the clinical value of the ventricular torsion as a sensitive indicator of cardiac function by comparison of preoperative and postoperative torsion.Methods: A total of 54 volunteers and 36 patients with previous myocardial infarction (MI) and LV ejection fraction (EF) between 30%-50% were screened preoperatively or postoperatively by MRI. The patients’ short axis views of the whole heart were acquired, and all patients had a scar area >75% in at least one of the anterior or inferior segments. Their apical and basal rotation values were analyzed by feature tracking, and the correlation analysis was performed for the improvement of LV torsion and ejection fraction after CABG. The intra- and inter-observer reliabilities of torsion measured by CMR-FT were assessed.Results: In normal hearts, the apex rotated counterclockwise in the systolic period with the peak rotation as 10.2 ± 4.8°, and the base rotated clockwise as the peak value was 7.0 ± 3.3°. There was a timing hiatus between the apex and base untwisting, during which period the heart recoils and its suction sets the stage for the following rapid filling period. The postoperative torsion and rotation significantly improved compared with preoperative ones. However, the traditional indicator of cardiac function, ejection fraction, didn’t show significant improvement.Conclusion: Left ventricular torsion derived from CMR-FT, which does not require specialized CMR sequences, was sensitive to patients with low ejection fraction whose cardiac function significantly improved after CABG. The rapid acquisition of this measurement has potential for the assessment of cardiac function in clinical practice. 


2021 ◽  
Vol 23 (1) ◽  
Author(s):  
Haotian Gu ◽  
Rong Bing ◽  
Calvin Chin ◽  
Lingyun Fang ◽  
Audrey C. White ◽  
...  

Abstract Background First-phase ejection fraction (EF1; the ejection fraction measured during active systole up to the time of maximal aortic flow) measured by transthoracic echocardiography (TTE) is a powerful predictor of outcomes in patients with aortic stenosis. We aimed to assess whether cardiovascular magnetic resonance (CMR) might provide more precise measurements of EF1 than TTE and to examine the correlation of CMR EF1 with measures of fibrosis. Methods In 141 patients with at least mild aortic stenosis, we measured CMR EF1 from a short-axis 3D stack and compared its variability with TTE EF1, and its associations with myocardial fibrosis and clinical outcome (aortic valve replacement (AVR) or death). Results Intra- and inter-observer variation of CMR EF1 (standard deviations of differences within and between observers of 2.3% and 2.5% units respectively) was approximately 50% that of TTE EF1. CMR EF1 was strongly predictive of AVR or death. On multivariable Cox proportional hazards analysis, the hazard ratio for CMR EF1 was 0.93 (95% confidence interval 0.89–0.97, p = 0.001) per % change in EF1 and, apart from aortic valve gradient, CMR EF1 was the only imaging or biochemical measure independently predictive of outcome. Indexed extracellular volume was associated with AVR or death, but not after adjusting for EF1. Conclusions EF1 is a simple robust marker of early left ventricular impairment that can be precisely measured by CMR and predicts outcome in aortic stenosis. Its measurement by CMR is more reproducible than that by TTE and may facilitate left ventricular structure–function analysis.


Circulation ◽  
2007 ◽  
Vol 115 (14) ◽  
pp. 1876-1884 ◽  
Author(s):  
M.A. Tanner ◽  
R. Galanello ◽  
C. Dessi ◽  
G.C. Smith ◽  
M.A. Westwood ◽  
...  

Background— Cardiac complications secondary to iron overload are the leading cause of death in β-thalassemia major. Approximately two thirds of patients maintained on the parenteral iron chelator deferoxamine have myocardial iron loading. The oral iron chelator deferiprone has been demonstrated to remove myocardial iron, and it has been proposed that in combination with deferoxamine it may have additional effect. Methods and Results— Myocardial iron loading was assessed with the use of myocardial T2* cardiovascular magnetic resonance in 167 patients with thalassemia major receiving standard maintenance chelation monotherapy with subcutaneous deferoxamine. Of these patients, 65 with mild to moderate myocardial iron loading (T2* 8 to 20 ms) entered the trial with continuation of subcutaneous deferoxamine and were randomized to receive additional oral placebo (deferoxamine group) or oral deferiprone 75 mg/kg per day (combined group). The primary end point was the change in myocardial T2* over 12 months. Secondary end points of endothelial function (flow-mediated dilatation of the brachial artery) and cardiac function were also measured with cardiovascular magnetic resonance. There were significant improvements in the combined treatment group compared with the deferoxamine group in myocardial T2* (ratio of change in geometric means 1.50 versus 1.24; P =0.02), absolute left ventricular ejection fraction (2.6% versus 0.6%; P =0.05), and absolute endothelial function (8.8% versus 3.3%; P =0.02). There was also a significantly greater improvement in serum ferritin in the combined group (−976 versus −233 μg/L; P <0.001). Conclusions— In comparison to the standard chelation monotherapy of deferoxamine, combination treatment with additional deferiprone reduced myocardial iron and improved the ejection fraction and endothelial function in thalassemia major patients with mild to moderate cardiac iron loading.


2021 ◽  
Vol 22 (Supplement_2) ◽  
Author(s):  
J Gavara ◽  
V Marcos-Garces ◽  
C Rios-Navarro ◽  
MP Lopez-Lereu ◽  
JV Monmeneu ◽  
...  

Abstract Funding Acknowledgements Type of funding sources: Public grant(s) – EU funding. Main funding source(s): This work was supported by “Instituto de Salud Carlos III” and “Fondos Europeos de Desarrollo Regional FEDER” Background. Cardiovascular magnetic resonance (CMR) is the best tool for left ventricular ejection fraction (LVEF) quantification, but as yet the prognostic value of sequential LVEF assessment for major adverse cardiac event (MACE) prediction after ST-segment elevation myocardial infarction (STEMI) is uncertain. Purpose. We explored the prognostic impact of sequential assessment of CMR-derived LVEF after STEMI to predict subsequent MACE. Methods. We recruited 1036 STEMI patients in a large multicenter registry. LVEF (reduced [r]: &lt;40%; mid-range [mr]: 40-49%; preserved [p]: ≥50%) was sequentially quantified by CMR at 1 week and after &gt;3 months of follow-up. MACE was regarded as cardiovascular death or re-admission for acute heart failure after follow-up CMR. Results. During a 5.7-year mean follow-up, 82 MACE (8%) were registered. The MACE rate was higher only in patients with LVEF &lt; 40% at follow-up CMR (r-LVEF 22%, mr-LVEF 7%, p-LVEF 6%; p-value &lt; 0.001). Based on LVEF dynamics from 1-week to follow-up CMR, incidence of MACE was 5% for sustained LVEF³40% (n = 783), 13% for improved LVEF (from &lt;40 to ³40%, n = 96), 21% for worsened LVEF (from ³40% to &lt;40%, n = 34) and 22% for sustained LVEF &lt;40% (n = 100), p-value &lt; 0.001. Using a Markov approach that considered all studies performed, transitions towards improved LVEF predominated and only r-LVEF (at any time assessed) was significantly related to higher incidence of subsequent MACE. Conclusions. LVEF constitutes a pivotal CMR index for simple and dynamic post-STEMI risk stratification. Detection of reduced LVEF (&lt;40%) by CMR at any time during follow-up identifies a small subset of patients at high risk of subsequent events.


2021 ◽  
Vol 22 (Supplement_2) ◽  
Author(s):  
N Van Der Velde ◽  
CPM Janus ◽  
DJ Bowen ◽  
HC Hassing ◽  
I Kardys ◽  
...  

Abstract Funding Acknowledgements Type of funding sources: None. Background Long-term survivors of Hodgkin (HL) and non-Hodgkin (NHL) lymphomas experience late adverse effects of mediastinal radiotherapy and/or anthracycline containing chemotherapy, which lead to premature cardiovascular morbidity and mortality. It is unknown whether early stages of myocardial dysfunction and heart failure in these survivors can be detected by cardiovascular magnetic resonance imaging (CMR). Purpose To identify early sensitive markers for the detection of subclinical late cardiotoxicity using CMR in asymptomatic survivors of HL and (primary mediastinal large B-cell lymphoma) NHL. Methods For this prospective observational study, we included 80 HL or selected NHL survivors, who have been free of disease for ≥5 years and were treated with mediastinal radiotherapy (RT) with/without chemotherapy. Patients with known cardiac disease were excluded. Included patients were compared to 40 age- and sex matched healthy controls. CMR included 1) cine imaging for assessment of left ventricular (LV) and right ventricular (RV) dimensions, systolic function and strain; 2) 2-dimensional late gadolinium enhancement (LGE) imaging; 3) T2 mapping and 4) pre- and post-contrast T1 mapping (MOLLI) for assessment of native T1 values and extracellular volume (ECV). Results Of the 80 patients, 78 (98%) had a history of HL and 2 (2%) of NHL with a mean age of 47 ± 11 years (46% male). All patients were treated with mediastinal RT which was combined with anthracycline containing chemotherapy in 68 (85%) patients. The median interval between diagnosis and CMR was 20 [14 – 26] years. Differences in CMR characteristics between patients and healthy controls are shown in the table. LV end-systolic volume was statistically significantly higher, but LV ejection fraction and mass were significantly lower in patients compared to healthy controls. RV volumes were significantly lower in patients, but RV ejection fraction was preserved. Strain parameters of the LV, i.e. global longitudinal strain, global circumferential strain and global radial strain, were slightly but significantly reduced in patients. No significant differences were found in myocardial T2 times and ECV; however, native myocardial T1 time was significantly higher in patients compared to healthy controls. LGE was detected in 25% of the patients and in the majority of patients with LGE this was classified as hinge point fibrosis. Conclusion Asymptomatic survivors of HL and NHL are not exempt of late cardiotoxicity, which can be detected by subtle changes in LV myocardial function, strain and native T1 value with CMR. Furthermore, late gadolinium enhancement was present in 25% of the patients. Further longitudinal studies are needed to assess the implication of these changes in relation to clinical outcome.


Sign in / Sign up

Export Citation Format

Share Document