scholarly journals The impact of Wilson disease on myocardial tissue and function: a cardiovascular magnetic resonance study

2021 ◽  
Vol 23 (1) ◽  
Author(s):  
Janek Salatzki ◽  
Isabelle Mohr ◽  
Jannick Heins ◽  
Mert H. Cerci ◽  
Andreas Ochs ◽  
...  

Abstract Background Systemic effects of altered serum copper processing in Wilson Disease (WD) might induce myocardial copper deposition and consequently myocardial dysfunction and structural remodeling. This study sought to investigate the prevalence, manifestation and predictors of myocardial tissue abnormalities in WD patients. Methods We prospectively enrolled WD patients and an age-matched group of healthy individuals. We applied cardiovascular magnetic resonance (CMR) to analyze myocardial function, strain, and tissue characteristics. A subgroup analysis of WD patients with predominant neurological (WD-neuro+) or hepatic manifestation only (WD-neuro−) was performed. Results Seventy-six patients (37 years (27–49), 47% women) with known WD and 76 age-matched healthy control subjects were studied. The prevalence of atrial fibrillation in WD patients was 5% and the prevalence of symptomatic heart failure was 2.6%. Compared to healthy controls, patients with WD had a reduced left ventricular global circumferential strain (LV-GCS), and also showed abnormalities consistent with global and regional myocardial fibrosis. WD-neuro+ patients presented with more severe structural remodeling and functional impairment when compared to WD-neuro− patients. Conclusions In a large cohort, WD was not linked to a distinct cardiac phenotype except CMR indexes of myocardial fibrosis. More research is warranted to assess the prognostic implications of these findings. Trial registration: This trial is registered at the local institutional ethics committee (S-188/2018).

2021 ◽  
Vol 8 ◽  
Author(s):  
Wei Sun ◽  
Xuehua Shen ◽  
Jing Wang ◽  
Shuangshuang Zhu ◽  
Yanting Zhang ◽  
...  

Objective: This study aimed to: (1) evaluate the association between myocardial fibrosis (MF) quantified by extracellular volume fraction (ECV) and myocardial strain measured by two-dimensional (2D)- and three-dimensional speckle-tracking echocardiography (3D-STE) and (2) further investigate which strain parameter measured by 2D- and 3D-STE is the more robust predictor of MF in heart transplant (HT) recipients.Methods: A total of 40 patients with HT and 20 healthy controls were prospectively enrolled. Left ventricular (LV)-global longitudinal strain (GLS), global circumferential strain (GCS), and global radial strain (GRS) were measured by 2D- and 3D-STE. LV diffuse MF was defined by cardiovascular magnetic resonance (CMR)-ECV.Results: The HT recipients had a significantly higher native T1 and ECV than healthy controls (1043.8 ± 34.0 vs. 999.7 ± 19.7 ms, p < 0.001; 26.6 ± 2.7 vs. 24.3 ± 1.8%, p = 0.02). The 3D- and 2D-STE-LVGLS and LVGCS were lower (p < 0.005) in the HT recipients than in healthy controls. ECV showed a moderate correlation with 2D-LVGLS (r = 0.53, p = 0.002) and 3D-LVGLS (r = 0.60, p < 0.001), but it was not correlated with 2D or 3D-LVGCS, or LVGRS. Furthermore, 3D-LVGLS and 2D-LVGLS had a similar correlation with CMR-ECV (r = 0.60 vs. 0.53, p = 0.670). A separate stepwise multivariate linear analysis showed that both the 2D-LVGLS (β = 0.39, p = 0.019) and 3D-LVGLS (β = 0.54, p < 0.001) were independently associated with CMR-ECV.Conclusion: CMR marker of diffuse MF was present in asymptomatic patients with HT and appeared to be associated with decreased myocardial strain by echocardiography. Both the 2D- and 3D-LVGLS were independently correlated with diffuse LVMF, which may provide an alternative non-invasive tool for monitoring the development of adverse fibrotic remodeling during the follow-up of HT recipients.


2022 ◽  
Vol 24 (1) ◽  
Author(s):  
Judy M. Luu ◽  
Catherine Gebhard ◽  
Chinthanie Ramasundarahettige ◽  
Dipika Desai ◽  
Karleen Schulze ◽  
...  

Abstract Background Despite the growing utility of cardiovascular magnetic resonance (CMR) for cardiac morphology and function, sex and age-specific normal reference values derived from large, multi-ethnic data sets are lacking. Furthermore, most available studies use a simplified tracing methodology. Using a large cohort of participants without history of cardiovascular disease (CVD) or risk factors from the Canadian Alliance for Healthy Heart and Minds, we sought to establish a robust set of reference values for ventricular and atrial parameters using an anatomically correct contouring method, and to determine the influence of age and sex on ventricular parameters. Methods and results Participants (n = 3206, 65% females; age 55.2 ± 8.4 years for females and 55.1 ± 8.8 years for men) underwent CMR using standard methods for quantitative measurements of cardiac parameters. Normal ventricular and atrial reference values are provided: (1) for males and females, (2) stratified by four age categories, and (3) for different races/ethnicities. Values are reported as absolute, indexed to body surface area, or height. Ventricular volumes and mass were significantly larger for males than females (p < 0.001). Ventricular ejection fraction was significantly diminished in males as compared to females (p < 0.001). Indexed left ventricular (LV) end-systolic, end-diastolic volumes, mass and right ventricular (RV) parameters significantly decreased as age increased for both sexes (p < 0.001). For females, but not men, mean LV and RVEF significantly increased with age (p < 0.001). Conclusion Using anatomically correct contouring methodology, we provide accurate sex and age-specific normal reference values for CMR parameters derived from the largest, multi-ethnic population free of CVD to date. Clinical trial registration ClinicalTrials.gov, NCT02220582. Registered 20 August 2014—Retrospectively registered, https://clinicaltrials.gov/ct2/show/NCT02220582.


2020 ◽  
Vol 22 (1) ◽  
Author(s):  
Boyang Liu ◽  
Desley A. H. Neil ◽  
Monisha Premchand ◽  
Moninder Bhabra ◽  
Ramesh Patel ◽  
...  

Abstract Background Myocardial fibrosis occurs in end-stage heart failure secondary to mitral regurgitation (MR), but it is not known whether this is present before onset of symptoms or myocardial dysfunction. This study aimed to characterise myocardial fibrosis in chronic severe primary MR on histology, compare this to tissue characterisation on cardiovascular magnetic resonance (CMR) imaging, and investigate associations with symptoms, left ventricular (LV) function, and exercise capacity. Methods Patients with class I or IIa indications for surgery underwent CMR and cardiopulmonary exercise testing. LV biopsies were taken at surgery and the extent of fibrosis was quantified on histology using collagen volume fraction (CVFmean) compared to autopsy controls without cardiac pathology. Results 120 consecutive patients (64 ± 13 years; 71% male) were recruited; 105 patients underwent MV repair while 15 chose conservative management. LV biopsies were obtained in 86 patients (234 biopsy samples in total). MR patients had more fibrosis compared to 8 autopsy controls (median: 14.6% [interquartile range 7.4–20.3] vs. 3.3% [2.6–6.1], P < 0.001); this difference persisted in the asymptomatic patients (CVFmean 13.6% [6.3–18.8], P < 0.001), but severity of fibrosis was not significantly higher in NYHA II-III symptomatic MR (CVFmean 15.7% [9.9–23.1] (P = 0.083). Fibrosis was patchy across biopsy sites (intraclass correlation 0.23, 95% CI 0.08–0.39, P = 0.001). No significant relationships were identified between CVFmean and CMR tissue characterisation [native T1, extracellular volume (ECV) or late gadolinium enhancement] or measures of LV function [LV ejection fraction (LVEF), global longitudinal strain (GLS)]. Although the range of ECV was small (27.3 ± 3.2%), ECV correlated with multiple measures of LV function (LVEF: Rho = − 0.22, P = 0.029, GLS: Rho = 0.29, P = 0.003), as well as NTproBNP (Rho = 0.54, P < 0.001) and exercise capacity (%PredVO2max: R = − 0.22, P = 0.030). Conclusions Patients with chronic primary MR have increased fibrosis before the onset of symptoms. Due to the patchy nature of fibrosis, CMR derived ECV may be a better marker of global myocardial status. Clinical trial registration Mitral FINDER study; Clinical Trials NCT02355418, Registered 4 February 2015, https://clinicaltrials.gov/ct2/show/NCT02355418


Sign in / Sign up

Export Citation Format

Share Document