scholarly journals Physiological and biomechanical comparison of overground, treadmill, and ergometer handrim wheelchair propulsion in able-bodied subjects under standardized conditions

Author(s):  
Rick de Klerk ◽  
Vera Velhorst ◽  
Dirkjan (H.E.J.) Veeger ◽  
Lucas H. V. van der Woude ◽  
Riemer J. K. Vegter

Abstract Background Handrim wheelchair propulsion is often assessed in the laboratory on treadmills (TM) or ergometers (WE), under the assumption that they relate to regular overground (OG) propulsion. However, little is known about the agreement of data obtained from TM, WE, and OG propulsion under standardized conditions. The current study aimed to standardize velocity and power output among these three modalities to consequently compare obtained physiological and biomechanical outcome parameters. Methods Seventeen able-bodied participants performed two submaximal practice sessions before taking part in a measurement session consisting of 3 × 4 min of submaximal wheelchair propulsion in each of the different modalities. Power output and speed for TM and WE propulsion were matched with OG propulsion, making them (mechanically) as equal as possible. Physiological data and propulsion kinetics were recorded with a spirometer and a 3D measurement wheel, respectively. Results Agreement among conditions was moderate to good for most outcome variables. However, heart rate was significantly higher in OG propulsion than in the TM condition. Push time and contact angle were smaller and fraction of effective force was higher on the WE when compared to OG/TM propulsion. Participants used a larger cycle time and more negative work per cycle in the OG condition. A continuous analysis using statistical parametric mapping showed a lower torque profile in the start of the push phase for TM propulsion versus OG/WE propulsion. Total force was higher during the start of the push phase for the OG conditions when compared to TM/WE propulsion. Conclusions Physiological and biomechanical outcomes in general are similar, but possible differences between modalities exist, even after controlling for power output using conventional techniques. Further efforts towards increasing the ecological validity of lab-based equipment is advised and the possible impact of these differences -if at all- in (clinical) practice should be evaluated.

1994 ◽  
Vol 11 (1) ◽  
pp. 71-85 ◽  
Author(s):  
Karin Roeleveld ◽  
Eric Lute ◽  
Dirkjan Veeger ◽  
Luc van der Woude ◽  
Tom Gwinn

To assess power output, force application, and kinematics of wheelchair propulsion in peak exercise, nine wheelchair athletes with medical lesion levels of T8 or lower performed a 30-s sprint test on a stationary wheelchair ergometer. Mean power output, calculated for the right wheel only, was 59.4 ± 8.5 W. The ratio between effective force and total propulsive force was 60 ± 6%. A negative torque around the hand and a not tangentially directed total force accounted for this low effectiveness. Since the subject group was highly trained, their technique was considered to be optimal for the given circumstances. Therefore, athletes who want to improve power output by increasing effectiveness should keep in mind the existence of a nontangential propulsive force and a braking torque applied by the hands onto the hand rim surface. It is likely that both aspects will be influenced by the geometry of the wheelchair, for example, hand rim dimension or seat position.


Author(s):  
Rick de Klerk ◽  
Riemer J. K. Vegter ◽  
Marika T. Leving ◽  
Sonja de Groot ◽  
DirkJan H. E. J. Veeger ◽  
...  

1998 ◽  
Vol 14 (4) ◽  
pp. 412-427 ◽  
Author(s):  
Victoria L. Goosey ◽  
Ian G. Campbell ◽  
Neil E. Fowler

Three-dimensional kinematic and physiological data were obtained from 18 wheelchair racers, to allow the relationship between pushing economy and kinematic variables at 4.70 m · s−1(n= 18) and 6.58 m · s−1(n= 12) to be examined. Large inter individual differences in wheelchair propulsion styles were present, which made it difficult to identify variables that were associated with pushing economy and indeed to distinguish key variables that were characteristic of an economical wheelchair racer. Furthermore, those variables associated with economy proved inconsistent across the two speeds. However, at both speeds a higher mechanical efficiency and lower push rate were associated with better economy (p< .05). It was also found that the timing parameters were important. In this respect most athletes tended to push through a similar push angle; however, push rate differed between individuals, suggesting that the magnitude and direction of the hand-rim forces may be important for determining economy of propulsion.


2020 ◽  
Vol 143 (2) ◽  
Author(s):  
Hunter J. Bennett ◽  
Kevin A. Valenzuela ◽  
Scott K. Lynn ◽  
Joshua T. Weinhandl

Abstract Alterations of foot rotation angles have successfully reduced external knee adduction moments during walking and running. However, reductions in knee adduction moments may not result in reductions in knee joint reaction forces. The purpose of this study was to examine the effects of internal and external foot rotation on knee, hip, and ankle joint reaction forces during running. Motion capture and force data were recorded of 19 healthy adults running at 3.35 m/s during three conditions: (1) preferred (normal) and with (2) internal and (3) external foot rotation. Musculoskeletal simulations were performed using opensim and the Rajagopal 2015 model, modified to a two degree-of-freedom knee joint. Muscle excitations were derived using static optimization, including muscle physiology parameters. Joint reaction forces (i.e., the total force acting on the joints) were computed and compared between conditions using one-way analyses of variance (ANOVAs) via statistical parametric mapping (SPM). Internal foot rotation reduced resultant hip forces (from 18% to 23% stride), while external rotation reduced resultant ankle forces (peak force at 20% stride) during the stance phase. Three-dimensional and resultant knee joint reaction forces only differed at very early and very late stance phase. The results of this study indicate, similar to previous findings, that reductions in external knee adduction moments do not mirror reductions in knee joint reaction forces.


2001 ◽  
Vol 33 (3) ◽  
pp. 476-484 ◽  
Author(s):  
JOHN W. CHOW ◽  
TIM A. MILLIKAN ◽  
LES G. CARLTON ◽  
MARTY I. MORSE ◽  
WOEN-SIK CHAE

2019 ◽  
Vol 14 (6) ◽  
pp. 747-756 ◽  
Author(s):  
Jorge Carlos-Vivas ◽  
Elena Marín-Cascales ◽  
Tomás T. Freitas ◽  
Jorge Perez-Gomez ◽  
Pedro E. Alcaraz

Purpose: To describe the load–velocity relationship and the effects of increasing loads on spatiotemporal and derived kinetic variables of sprinting using weighted vests (WV) in soccer players and determining the load that maximizes power output. Methods: A total of 23 soccer players (age 20.8 [1.5] y) performed 10 maximal 30-m sprints wearing a WV with 5 different loads (0%, 10%, 20%, 30%, and 40% body mass [BM]). Sprint velocity and time were collected using a radar device and wireless photocells. Mechanical outputs were computed using a recently developed valid and reliable field method that estimates the step-averaged ground-reaction forces during overground sprint acceleration from anthropometric and spatiotemporal data. Raw velocity–time data were fitted by an exponential function and used to calculate the net horizontal ground-reaction forces and horizontal power output. Individual linear force–velocity relationships were then extrapolated to calculate the theoretical maximum horizontal force (F0) and velocity and the ratio of force application (proportion of the total force production that is directed forward at sprint start). Results: Magnitude-based inferences showed an almost certain decrease in F0 (effect size = 0.78–3.35), maximum power output (effect size = 0.78–3.81), and maximum ratio of force (effect size = 0.82–3.87) as the load increased. The greatest changes occurred with loads heavier than 20% BM, especially in ratio of force. In addition, the maximum power was achieved under unloaded conditions. Conclusions: Increasing load in WV sprinting affects spatiotemporal and kinetic variables. The greatest change in ratio of force happened with loads heavier than 20% BM. Thus, the authors recommend the use of loads ≤20% BM for WV sprinting.


2013 ◽  
Vol 29 (6) ◽  
pp. 687-695 ◽  
Author(s):  
Ursina Arnet ◽  
Stefan van Drongelen ◽  
DirkJan Veeger ◽  
Lucas H. V. van der Woude

The aim of the study was to evaluate the external applied forces, the effectiveness of force application and the net shoulder moments of handcycling in comparison with handrim wheelchair propulsion at different inclines. Ten able-bodied men performed standardized exercises on a treadmill at inclines of 1%, 2.5% and 4% with an instrumented handbike and wheelchair that measured three-dimensional propulsion forces. The results showed that during handcycling significantly lower mean forces were applied at inclines of 2.5% (P< .001) and 4% (P< .001) and significantly lower peak forces were applied at all inclines (1%:P= .014, 2.5% and 4%:P< .001). At the 2.5% incline, where power output was the same for both devices, total forces (mean over trial) of 22.8 N and 27.5 N and peak forces of 40.1 N and 106.9 N were measured for handbike and wheelchair propulsion. The force effectiveness did not differ between the devices (P= .757); however, the effectiveness did increase with higher inclines during handcycling whereas it stayed constant over all inclines for wheelchair propulsion. The resulting peak net shoulder moments were lower for handcycling compared with wheelchair propulsion at all inclines (P< .001). These results confirm the assumption that handcycling is physically less straining.


Sign in / Sign up

Export Citation Format

Share Document