scholarly journals Identifying and modulating distinct tremor states through peripheral nerve stimulation in Parkinsonian rest tremor

Author(s):  
Beatriz S. Arruda ◽  
Carolina Reis ◽  
James J. Sermon ◽  
Alek Pogosyan ◽  
Peter Brown ◽  
...  

Abstract Background Resting tremor is one of the most common symptoms of Parkinson’s disease. Despite its high prevalence, resting tremor may not be as effectively treated with dopaminergic medication as other symptoms, and surgical treatments such as deep brain stimulation, which are effective in reducing tremor, have limited availability. Therefore, there is a clinical need for non-invasive interventions in order to provide tremor relief to a larger number of people with Parkinson’s disease. Here, we explore whether peripheral nerve stimulation can modulate resting tremor, and under what circumstances this might lead to tremor suppression. Methods We studied 10 people with Parkinson’s disease and rest tremor, to whom we delivered brief electrical pulses non-invasively to the median nerve of the most tremulous hand. Stimulation was phase-locked to limb acceleration in the axis with the biggest tremor-related excursion. Results We demonstrated that rest tremor in the hand could change from one pattern of oscillation to another in space. Median nerve stimulation was able to significantly reduce (− 36%) and amplify (117%) tremor when delivered at a certain phase. When the peripheral manifestation of tremor spontaneously changed, stimulation timing-dependent change in tremor severity could also alter during phase-locked peripheral nerve stimulation. Conclusions These results highlight that phase-locked peripheral nerve stimulation has the potential to reduce tremor. However, there can be multiple independent tremor oscillation patterns even within the same limb. Parameters of peripheral stimulation such as stimulation phase may need to be adjusted continuously in order to sustain systematic suppression of tremor amplitude.

Biomedicines ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 74
Author(s):  
Yu-Chen Chen ◽  
Chang-Chih Kuo ◽  
Shin-Yuan Chen ◽  
Tsung-Ying Chen ◽  
Yan-Hong Pan ◽  
...  

Deep brain stimulation (DBS) improves Parkinson’s disease (PD) symptoms by suppressing neuropathological oscillations. These oscillations are also modulated by inhalational anesthetics used during DBS surgery in some patients, influencing electrode placement accuracy. We sought to evaluate a method that could avoid these effects. We recorded subthalamic nucleus (STN) neuronal firings in 11 PD patients undergoing DBS under inhalational anesthesia. Microelectrode recording (MER) during DBS was collected under median nerve stimulation (MNS) delivered at 5, 20, and 90 Hz frequencies and without MNS. We analyzed the spike firing rate and neuronal activity with power spectral density (PSD), and assessed correlations between the neuronal oscillation parameters and clinical motor outcomes. No patient experienced adverse effects during or after DBS surgery. PSD analysis revealed that peripheral 20 Hz MNS produced significant differences in the dorsal and ventral subthalamic nucleus (STN) between the beta band oscillation (16.9 ± 7.0% versus 13.5 ± 4.8%, respectively) and gamma band oscillation (56.0 ± 13.7% versus 66.3 ± 9.4%, respectively) (p < 0.05). Moreover, 20-Hz MNS entrained neural oscillation over the dorsal STN, which correlated positively with motor disabilities. MNS allowed localization of the sensorimotor STN and identified neural characteristics under inhalational anesthesia. This paradigm may help identify an alternative method to facilitate STN identification and DBS surgery under inhalational anesthesia.


2021 ◽  
Vol 12 ◽  
Author(s):  
Shih-Yen Tsai ◽  
Jennifer A. Schreiber ◽  
Natalie S. Adamczyk ◽  
Joanna Y. Wu ◽  
Son T. Ton ◽  
...  

Lack of blood flow to the brain, i.e., ischemic stroke, results in loss of nerve cells and therefore loss of function in the effected brain regions. There is no effective treatment to improve lost function except restoring blood flow within the first several hours. Rehabilitation strategies are widely used with limited success. The purpose of this study was to examine the effect of electrical stimulation on the impaired upper extremity to improve functional recovery after stroke. We developed a rodent model using an electrode cuff implant onto a single peripheral nerve (median nerve) of the paretic forelimb and applied daily electrical stimulation. The skilled forelimb reaching test was used to evaluate functional outcome after stroke and electrical stimulation. Anterograde axonal tracing from layer V pyramidal neurons with biotinylated dextran amine was done to evaluate the formation of new neuronal connections from the contralesional cortex to the deafferented spinal cord. Rats receiving electrical stimulation on the median nerve showed significant improvement in the skilled forelimb reaching test in comparison with stroke only and stroke with sham stimulation. Rats that received electrical stimulation also exhibited significant improvement in the latency to initiate adhesive removal from the impaired forelimb, indicating better sensory recovery. Furthermore, axonal tracing analysis showed a significant higher midline fiber crossing index in the cervical spinal cord of rats receiving electrical stimulation. Our results indicate that direct peripheral nerve stimulation leads to improved sensorimotor recovery in the stroke-impaired forelimb, and may be a useful approach to improve post-stroke deficits in human patients.


2011 ◽  
Vol 17 (1) ◽  
pp. 30-33 ◽  
Author(s):  
R. Nisticò ◽  
D. Pirritano ◽  
M. Salsone ◽  
F. Novellino ◽  
F. Del Giudice ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document