scholarly journals Constant up-regulation of BiP/GRP78 expression prevents virus-induced apoptosis in BHK-21 cells with Japanese encephalitis virus persistent infection

2015 ◽  
Vol 12 (1) ◽  
pp. 32 ◽  
Author(s):  
Hey Lyoo ◽  
Soo Park ◽  
Ji Kim ◽  
Yong Jeong
2019 ◽  
Vol 93 (17) ◽  
Author(s):  
Qianruo Wang ◽  
Xiu Xin ◽  
Ting Wang ◽  
Jiawu Wan ◽  
Yangtao Ou ◽  
...  

ABSTRACTAccumulated evidence demonstrates that Japanese encephalitis virus (JEV) infection triggers endoplasmic reticulum (ER) stress and neuron apoptosis. ER stress sensor protein kinase R-like endoplasmic reticulum kinase (PERK) has been reported to induce apoptosis under acute or prolonged ER stress. However, the precise role of PERK in JEV-induced apoptosis and encephalitis remains unknown. Here, we report that JEV infection activates the PERK-ATF4-CHOP apoptosis pathway bothin vitroandin vivo. PERK activation also promotes the formation of stress granule, which in turn represses JEV-induced apoptosis. However, PERK inhibitor reduces apoptosis, indicating that JEV-activated PERK predominantly induces apoptosis via the PERK-ATF4-CHOP apoptosis pathway. Among JEV proteins that have been reported to induce ER stress, only JEV NS4B can induce PERK activation. PERK has been reported to form an active molecule by dimerization. The coimmunoprecipitation assay shows that NS4B interacts with PERK. Moreover, glycerol gradient centrifugation shows that NS4B induces PERK dimerization. Both the LIG-FHA and the LIG-WD40 domains within NS4B are required to induce PERK dimerization, suggesting that JEV NS4B pulls two PERK molecules together by simultaneously interacting with them via different motifs. PERK deactivation reduces brain cell damage and encephalitis during JEV infection. Furthermore, expression of JEV NS4B is sufficient to induce encephalitis via PERK in mice, indicating that JEV activates PERK primarily via its NS4B to cause encephalitis. Taken together, our findings provide a novel insight into JEV-caused encephalitis.IMPORTANCEJapanese encephalitis virus (JEV) infection triggers endoplasmic reticulum (ER) stress and neuron apoptosis. ER stress sensor protein kinase R-like endoplasmic reticulum kinase (PERK) has been reported to induce apoptosis under acute or prolonged ER stress. However, whether the PERK pathway of ER stress response plays important roles in JEV-induced apoptosis and encephalitis remains unknown. Here, we found that JEV infection activates ER stress sensor PERK in neuronal cells and mouse brains. PERK activation induces apoptosis via the PERK-ATF4-CHOP apoptosis pathway upon JEV infection. Among the JEV proteins prM, E, NS1, NS2A, NS2B, and NS4B, only NS4B activates PERK. Moreover, activated PERK participates in apoptosis and encephalitis induced by JEV and NS4B. These findings provide a novel therapeutic approach for JEV-caused encephalitis.


2021 ◽  
Vol 22 (8) ◽  
pp. 4218
Author(s):  
Chih-Wei Huang ◽  
Kuen-Nan Tsai ◽  
Yi-Shiuan Chen ◽  
Ruey-Yi Chang

MicroRNAs (miRNAs) play versatile roles in multiple biological processes. However, little is known about miRNA’s involvement in flavivirus persistent infection. Here, we used an miRNA array analysis of Japanese encephalitis virus (JEV)-infected cells to search for persistent infection-associated miRNAs in comparison to acute infection. Among all differentially expressed miRNAs, the miR-125b-5p is the most significantly increased one. The high level of miR-125b-5p in persistently JEV-infected cells was confirmed by Northern analysis and real-time quantitative polymerase chain reaction. As soon as the cells established a persistent infection, a significantly high expression of miR-125b-5p was readily observed. Transfecting excess quantities of a miR-125b-5p mimic into acutely infected cells reduced genome replication and virus titers. Host targets of miR125b-5p were analyzed by target prediction algorithms, and six candidates were confirmed by a dual-luciferase reporter assay. These genes were upregulated in the acutely infected cells and sharply declined in the persistently infected cells. The transfection of the miR125b-5p mimic reduced the expression levels of Stat3, Map2k7, and Triap1. Our studies indicated that miR-125b-5p targets both viral and host sequences, suggesting its role in coordinating viral replication and host antiviral responses. This is the first report to characterize the potential roles of miR-125b-5p in persistent JEV infections.


2008 ◽  
Vol 89 (8) ◽  
pp. 1930-1941 ◽  
Author(s):  
Chang-Huei Tsao ◽  
Hong-Lin Su ◽  
Yi-Ling Lin ◽  
Han-Pang Yu ◽  
Shu-Ming Kuo ◽  
...  

Japanese encephalitis virus (JEV), a mosquito-borne flavivirus, replicates primarily at the endoplasmic reticulum and thereby triggers apoptosis of infected cells. This study investigated the hierarchical activation of the caspase network induced by JEV infection. It was found that JEV activated the initiators caspase-8 and -9, as well as effector caspase-3, in infected baby hamster kidney and mouse neuroblastoma (N18) cells. In neuronal N18 cells, JEV infection triggered cytochrome c release from mitochondria, which in turn activated caspase-9 and -3. Treatment of JEV-infected N18 cells with cyclosporin A or ruthenium red, which attenuate mitochondrial injuries, blocked activation of caspase-9 or -3, typifying that, in neuronal cells, this apoptosis involves the mitochondrial pathway. Alternatively, in caspase-3-deficient MCF-7 cells, JEV persisted and readily triggered a typical apoptotic response, including cytochrome c release and full activation of caspase-9 and -8 along with caspase-6, indicating that JEV did not require caspase-3 to manifest caspase-8 activation and apoptosis. Interestingly, a Fas-associated death-domain-containing protein (FADD) dominant-negative mutant, which interfered with transmission of the extracellular death signals into cells through the Fas/tumour necrosis factor (TNF) receptor, failed to block JEV-induced apoptosis and caspase-8 activation, implying that receptor oligomerization of the Fas/TNF pathway might not participate in JEV-induced apoptosis. Taken together, these results illustrate that JEV infection triggers caspase cascades involving the initiators caspase-8 and -9, probably through FADD-independent but mitochondrion-dependent pathways.


2002 ◽  
Vol 76 (9) ◽  
pp. 4162-4171 ◽  
Author(s):  
Hong-Lin Su ◽  
Ching-Len Liao ◽  
Yi-Ling Lin

ABSTRACT The malfunctioning of the endoplasmic reticulum (ER) of cells in hosts ranging from yeast to mammals can trigger an unfolded protein response (UPR). Such malfunctioning can result from a variety of ER stresses, including the inhibition of protein glycosylation and calcium imbalance. To cope with ER stresses, cells may rely on the UPR to send a signal(s) from the ER to the nucleus to stimulate appropriate cellular responses, including induction of chaperone expression. During Japanese encephalitis virus (JEV) infection, the lumen of the ER rapidly accumulates substantial amounts of viral proteins for virus progeny production. In the present study, we demonstrate that as evidenced by certain chaperone inductions, JEV infection triggers the UPR in fibroblast BHK-21 cells and in neuronal N18 and NT-2 cells, in which JEV results in apoptotic cell death. By contrast, no UPR was observed in apoptosis-resistant K562 cells infected by JEV. JEV infection also activates expression of CHOP/GADD153, a distinctive transcription factor often induced by the UPR, and appears to trigger activation of p38 mitogen-activated protein kinase, a posttranslational activator of CHOP. Ectopic enforcement of CHOP expression enhanced JEV-induced apoptosis, whereas treatment with a p38-specific inhibitor, SB203580, partially blocked JEV-induced apoptosis. Interestingly, bcl-2 overexpression and treatment with a pancaspase inhibitor, z-VAD-fmk, inhibited CHOP induction and diminished JEV-induced apoptosis, suggesting that Bcl-2 and caspases could be the upstream regulators of CHOP. Our results thus suggest that virus-induced ER stress may participate, via p38-dependent and CHOP-mediated pathways, in the apoptotic process triggered by JEV infection.


Sign in / Sign up

Export Citation Format

Share Document