scholarly journals Japanese Encephalitis Virus Infection Initiates Endoplasmic Reticulum Stress and an Unfolded Protein Response

2002 ◽  
Vol 76 (9) ◽  
pp. 4162-4171 ◽  
Author(s):  
Hong-Lin Su ◽  
Ching-Len Liao ◽  
Yi-Ling Lin

ABSTRACT The malfunctioning of the endoplasmic reticulum (ER) of cells in hosts ranging from yeast to mammals can trigger an unfolded protein response (UPR). Such malfunctioning can result from a variety of ER stresses, including the inhibition of protein glycosylation and calcium imbalance. To cope with ER stresses, cells may rely on the UPR to send a signal(s) from the ER to the nucleus to stimulate appropriate cellular responses, including induction of chaperone expression. During Japanese encephalitis virus (JEV) infection, the lumen of the ER rapidly accumulates substantial amounts of viral proteins for virus progeny production. In the present study, we demonstrate that as evidenced by certain chaperone inductions, JEV infection triggers the UPR in fibroblast BHK-21 cells and in neuronal N18 and NT-2 cells, in which JEV results in apoptotic cell death. By contrast, no UPR was observed in apoptosis-resistant K562 cells infected by JEV. JEV infection also activates expression of CHOP/GADD153, a distinctive transcription factor often induced by the UPR, and appears to trigger activation of p38 mitogen-activated protein kinase, a posttranslational activator of CHOP. Ectopic enforcement of CHOP expression enhanced JEV-induced apoptosis, whereas treatment with a p38-specific inhibitor, SB203580, partially blocked JEV-induced apoptosis. Interestingly, bcl-2 overexpression and treatment with a pancaspase inhibitor, z-VAD-fmk, inhibited CHOP induction and diminished JEV-induced apoptosis, suggesting that Bcl-2 and caspases could be the upstream regulators of CHOP. Our results thus suggest that virus-induced ER stress may participate, via p38-dependent and CHOP-mediated pathways, in the apoptotic process triggered by JEV infection.

2014 ◽  
Vol 95 (1) ◽  
pp. 71-79 ◽  
Author(s):  
Sankar Bhattacharyya ◽  
Utsav Sen ◽  
Sudhanshu Vrati

Japanese encephalitis virus (JEV) infection-induced encephalitis causes extensive death or long-term neurological damage, especially among children, in south and south-east Asia. Infection of mammalian cells has shown induction of an unfolded protein response (UPR), presumably leading to programmed cell death or apoptosis of the host cells. UPR, a cellular response to accumulation of unfolded or misfolded proteins in the endoplasmic reticulum (ER) lumen, is initiated by three ER-lumen-resident sensors (PERK, IRE1 and ATF6), and involves transcriptional and translational regulation of the expression of several genes. The sensor IRE1 possesses an intrinsic RNase activity, activated through homo-dimerization and autophosphorylation during UPR. Activated IRE1 performs cytoplasmic cleavage of Xbp1u transcripts, thus facilitating synthesis of XBP1S transcription factor, in addition to cleavage of a cohort of cellular transcripts, the later initiating the regulated IRE1-dependent decay (RIDD) pathway. In this study, we report the initiation of the RIDD pathway in JEV-infected mouse neuroblastoma cells (Neuro2a) and its effect on viral infection. Activation of the RIDD pathway led to degradation of known mouse cell target transcripts without showing any effect on JEV RNA despite the fact that both when biochemically purified showed significant enrichment in ER membrane-enriched fractions. Additionally, inhibition of the IRE1 RNase activity by STF083010, a specific drug, diminished viral protein levels and reduced the titre of the virus produced from infected Neuro2a cells. The results present evidence for the first report of a beneficial effect of RIDD activation on the viral life cycle.


2019 ◽  
Vol 93 (17) ◽  
Author(s):  
Qianruo Wang ◽  
Xiu Xin ◽  
Ting Wang ◽  
Jiawu Wan ◽  
Yangtao Ou ◽  
...  

ABSTRACTAccumulated evidence demonstrates that Japanese encephalitis virus (JEV) infection triggers endoplasmic reticulum (ER) stress and neuron apoptosis. ER stress sensor protein kinase R-like endoplasmic reticulum kinase (PERK) has been reported to induce apoptosis under acute or prolonged ER stress. However, the precise role of PERK in JEV-induced apoptosis and encephalitis remains unknown. Here, we report that JEV infection activates the PERK-ATF4-CHOP apoptosis pathway bothin vitroandin vivo. PERK activation also promotes the formation of stress granule, which in turn represses JEV-induced apoptosis. However, PERK inhibitor reduces apoptosis, indicating that JEV-activated PERK predominantly induces apoptosis via the PERK-ATF4-CHOP apoptosis pathway. Among JEV proteins that have been reported to induce ER stress, only JEV NS4B can induce PERK activation. PERK has been reported to form an active molecule by dimerization. The coimmunoprecipitation assay shows that NS4B interacts with PERK. Moreover, glycerol gradient centrifugation shows that NS4B induces PERK dimerization. Both the LIG-FHA and the LIG-WD40 domains within NS4B are required to induce PERK dimerization, suggesting that JEV NS4B pulls two PERK molecules together by simultaneously interacting with them via different motifs. PERK deactivation reduces brain cell damage and encephalitis during JEV infection. Furthermore, expression of JEV NS4B is sufficient to induce encephalitis via PERK in mice, indicating that JEV activates PERK primarily via its NS4B to cause encephalitis. Taken together, our findings provide a novel insight into JEV-caused encephalitis.IMPORTANCEJapanese encephalitis virus (JEV) infection triggers endoplasmic reticulum (ER) stress and neuron apoptosis. ER stress sensor protein kinase R-like endoplasmic reticulum kinase (PERK) has been reported to induce apoptosis under acute or prolonged ER stress. However, whether the PERK pathway of ER stress response plays important roles in JEV-induced apoptosis and encephalitis remains unknown. Here, we found that JEV infection activates ER stress sensor PERK in neuronal cells and mouse brains. PERK activation induces apoptosis via the PERK-ATF4-CHOP apoptosis pathway upon JEV infection. Among the JEV proteins prM, E, NS1, NS2A, NS2B, and NS4B, only NS4B activates PERK. Moreover, activated PERK participates in apoptosis and encephalitis induced by JEV and NS4B. These findings provide a novel therapeutic approach for JEV-caused encephalitis.


2014 ◽  
Vol 307 (6) ◽  
pp. C521-C531 ◽  
Author(s):  
Sumeet Solanki ◽  
Prabhatchandra R. Dube ◽  
Jean-Yves Tano ◽  
Lutz Birnbaumer ◽  
Guillermo Vazquez

Endoplasmic reticulum (ER) stress is a prominent mechanism of macrophage apoptosis in advanced atherosclerotic lesions. Recent studies from our laboratory showed that advanced atherosclerotic plaques in Apoe−/− mice with bone marrow deficiency of the calcium-permeable channel Transient Receptor Potential Canonical 3 (TRPC3) are characterized by reduced areas of necrosis and fewer apoptotic macrophages than animals transplanted with Trpc3+/+ bone marrow. In vitro, proinflammatory M1 but not anti-inflammatory M2 macrophages derived from Trpc3−/−Apoe−/− animals exhibited reduced ER stress-induced apoptosis. However, whether this was due to a specific effect of TRPC3 deficiency on macrophage ER stress signaling remained to be determined. In the present work we used polarized macrophages derived from mice with macrophage-specific deficiency of TRPC3 to examine the expression level of ER stress markers and the activation status of some typical mediators of macrophage apoptosis. We found that the reduced susceptibility of TRPC3-deficient M1 macrophages to ER stress-induced apoptosis correlates with an impaired unfolded protein response (UPR), reduced mitochondrion-dependent apoptosis, and reduced activation of the proapoptotic molecules calmodulin-dependent protein kinase II and signal transducer and activator of transcription 1. Notably, none of these pathways was altered in TRPC3-deficient M2 macrophages. These findings show for the first time an obligatory requirement for a member of the TRPC family of cation channels in ER stress-induced apoptosis in macrophages, underscoring a rather selective role of the TRPC3 channel on mechanisms related to the UPR signaling in M1 macrophages.


2018 ◽  
Vol 96 (3) ◽  
pp. 332-341 ◽  
Author(s):  
Guodong Liang ◽  
Xuedong Fang ◽  
Yubo Yang ◽  
Yan Song

It has been suggested that cell migration inducing hyaluronan binding protein (CEMIP) contributes to the carcinogenesis of colorectal cancer (CRC). Cancer cells can adapt to endoplasmic reticulum (ER) stress by initiating an unfolded protein response (UPR). This study aimed to investigate whether CEMIP affects the UPR of CRC cells, with a focus on 78 kDa glucose-regulated protein (GRP78, a major ER chaperone). We found that knockdown of CEMIP inhibited cell proliferation and induced a G1 arrest in SW480 CRC cells. The levels of cyclin D1 and cyclin E1 and phospho-retinoblastoma, which are known to promote the cell cycle progression from G0 or G1 into S phase, were decreased in CEMIP-silenced cells. CEMIP shRNA induced apoptosis and inhibited GRP78 expression in SW480 and Colo205 cells. The basal UPR of cancer cells was attenuated by CEMIP shRNA, as evidenced by the decreased expression of UPR sensors, protein kinase R-like endoplasmic reticulum kinase (PERK), inositol requiring enzyme 1 (IRE1), and activating transcription factor 6 (ATF6). Furthermore, CEMIP silencing sensitized CRC cells to thapsigargin-induced apoptosis. Our study demonstrates that the in-vitro anti-proliferative and pro-apoptotic effects in CRC cells that were induced by silencing CEMIP may be associated with GRP78 repression and UPR attenuation.


Sign in / Sign up

Export Citation Format

Share Document