scholarly journals Repeated lumbar punctures within 3 days may affect CSF biomarker levels

2019 ◽  
Vol 16 (1) ◽  
Author(s):  
Martin Olsson ◽  
Johan Ärlig ◽  
Jan Hedner ◽  
Kaj Blennow ◽  
Henrik Zetterberg

AbstractLumbar puncture (LP) is a common way of collecting cerebrospinal fluid (CSF) both in the clinic and in research. In this extension of a study on the relationship between sleep deprivation and CSF biomarkers for Alzheimer’s disease, we investigated CSF biomarker dynamics in relation to rebound sleep after sleep deprivation. Two LPs were performed within 3 days in 13 healthy volunteers. We noticed an unexpected sharp rise in biomarker concentrations in the second sample and therefore repeated the experiment, but without sleep intervention, in four additional individuals. The findings were similar in these subjects, suggesting an inherent methodological problem with repeated LPs. The result corroborates findings in studies with repeated CSF collection via indwelling lumbar catheters, and needs to be addressed in, for instance, pharmacodynamic studies employing these techniques.

2020 ◽  
Author(s):  
Jongmin Lee ◽  
Hyemin Jang ◽  
Sung Hoon Kang ◽  
Jaeho Kim ◽  
Ji-Sun Kim ◽  
...  

Abstract Background Cerebrospinal fluid (CSF) biomarkers are increasingly used in clinical practice for the diagnosis of Alzheimer’s disease (AD). We aimed to 1) determine cutoff values of CSF biomarkers for AD, 2) investigate their clinical utility by estimating a concordance with amyloid positron emission tomography (PET), and 3) apply AT (amyloid/tau) classification based on CSF results. Methods We performed CSF analysis in 51 normal controls (NC), 23 amnestic mild cognitive impairment (aMCI) and 65 AD dementia (ADD) patients at the Samsung Medical Center in Korea. We tried to develop cutoff of CSF biomarkers for differentiating ADD from NC using receiver operating characteristic analysis. We also investigated a concordance between CSF and amyloid PET results and applied AT classification scheme based on CSF biomarker abnormalities to characterize our participants. Results CSF Aβ42, total tau (t-tau) and phosphorylated tau (p-tau) significantly differ across the three groups. The area under curve for the differentiation between NC and ADD was highest in t-tau/Aβ42(0.994) followed by p-tau/Aβ42(0.963), Aβ42(0.960) and t-tau (0.918). The concordance rate between CSF Aβ42 and amyloid PET results was 92%. Finally, AT classification based on CSF biomarker abnormalities led to a majority of NC categorized into A-T-(72%), aMCI as A + T-(52%)/A + T+(30%), and AD as A + T+(56%)/A + T-(41%). Conclusion CSF biomarkers had high sensitivity and specificity in differentiating ADD from NC and were as accurate as amyloid PET. The AT group distribution was comparable to those of previous studies, which may serve to predict the prognosis more accurately than amyloid PET alone in the future.


2021 ◽  
Vol 79 (1) ◽  
pp. 163-175
Author(s):  
Linda J.C. van Waalwijk van Doorn ◽  
Mohsen Ghafoorian ◽  
Esther M.C. van Leijsen ◽  
Jurgen A.H.R. Claassen ◽  
Andrea Arighi ◽  
...  

Background: The cerebrospinal fluid (CSF) biomarkers amyloid-β 1–42 (Aβ42), total and phosphorylated tau (t-tau, p-tau) are increasingly used to assist in the clinical diagnosis of Alzheimer’s disease (AD). However, CSF biomarker levels can be affected by confounding factors. Objective: To investigate the association of white matter hyperintensities (WMHs) present in the brain with AD CSF biomarker levels. Methods: We included CSF biomarker and magnetic resonance imaging (MRI) data of 172 subjects (52 controls, 72 mild cognitive impairment (MCI), and 48 AD patients) from 9 European Memory Clinics. A computer aided detection system for standardized automated segmentation of WMHs was used on MRI scans to determine WMH volumes. Association of WMH volume with AD CSF biomarkers was determined using linear regression analysis. Results: A small, negative association of CSF Aβ42, but not p-tau and t-tau, levels with WMH volume was observed in the AD (r2 = 0.084, p = 0.046), but not the MCI and control groups, which was slightly increased when including the distance of WMHs to the ventricles in the analysis (r2 = 0.105, p = 0.025). Three global patterns of WMH distribution, either with 1) a low, 2) a peak close to the ventricles, or 3) a high, broadly-distributed WMH volume could be observed in brains of subjects in each diagnostic group. Conclusion: Despite an association of WMH volume with CSF Aβ42 levels in AD patients, the occurrence of WMHs is not accompanied by excess release of cellular proteins in the CSF, suggesting that WMHs are no major confounder for AD CSF biomarker assessment.


2010 ◽  
Vol 23 (2) ◽  
pp. 330-331
Author(s):  
Brendan Silbert ◽  
David Scott ◽  
Lisbeth Evered ◽  
Paul Maruff

The growing need for lumbar puncture in order to obtain cerebrospinal fluid (CSF) for the diagnosis Alzheimer's disease is becoming increasingly apparent (Herskovits and Growdon, 2010). The concept of a CSF sampling unit specializing in lumbar puncture would seem the most plausible solution. Physicians and interns are not necessarily skilled in the procedure and neurologists perform lumbar puncture rarely.


2021 ◽  
Vol 11 (2) ◽  
pp. 215
Author(s):  
Donovan A. McGrowder ◽  
Fabian Miller ◽  
Kurt Vaz ◽  
Chukwuemeka Nwokocha ◽  
Cameil Wilson-Clarke ◽  
...  

Alzheimer’s disease is a progressive, clinically heterogeneous, and particularly complex neurodegenerative disease characterized by a decline in cognition. Over the last two decades, there has been significant growth in the investigation of cerebrospinal fluid (CSF) biomarkers for Alzheimer’s disease. This review presents current evidence from many clinical neurochemical studies, with findings that attest to the efficacy of existing core CSF biomarkers such as total tau, phosphorylated tau, and amyloid-β (Aβ42), which diagnose Alzheimer’s disease in the early and dementia stages of the disorder. The heterogeneity of the pathophysiology of the late-onset disease warrants the growth of the Alzheimer’s disease CSF biomarker toolbox; more biomarkers showing other aspects of the disease mechanism are needed. This review focuses on new biomarkers that track Alzheimer’s disease pathology, such as those that assess neuronal injury (VILIP-1 and neurofilament light), neuroinflammation (sTREM2, YKL-40, osteopontin, GFAP, progranulin, and MCP-1), synaptic dysfunction (SNAP-25 and GAP-43), vascular dysregulation (hFABP), as well as CSF α-synuclein levels and TDP-43 pathology. Some of these biomarkers are promising candidates as they are specific and predict future rates of cognitive decline. Findings from the combinations of subclasses of new Alzheimer’s disease biomarkers that improve their diagnostic efficacy in detecting associated pathological changes are also presented.


2011 ◽  
Vol 2011 ◽  
pp. 1-6 ◽  
Author(s):  
Ezra Mulugeta ◽  
Elisabet Londos ◽  
Oskar Hansson ◽  
Clive Ballard ◽  
Ragnhild Skogseth ◽  
...  

We measured cerebrospinal fluid (CSF) levels of the soluble isoforms of amyloid precursor protein (APP; sAPPαsAPPβ) and other CSF biomarkers in 107 patients with Alzheimer's disease (AD), dementia with Lewy body dementia (DLB), Parkinson's disease dementia (PDD), and normal controls (NC) using commercial kits. DLB and PDD were combined in a Lewy body dementia group (LBD). No differences were observed in sAPPαand sAPPβlevels between the groups. Significant correlations were observed between sAPPαand sAPPβand between sAPPβand Mini-Mental State Examination scores in the total group analysis as well as when LBD and AD groups were analyzed separately. sAPPαand sAPPβlevels correlated with Aβ38, Aβ40, Aβ42, and Tau in the LBD group. In AD, sAPPαcorrelated with p-Tau and sAPPβwith Aβ40. The differential association between sAPPαand sAPPβwith Aβand Tau species between LBD and AD groups suggests a possible relationship with the underlying pathologies in LBD and AD.


2018 ◽  
Vol 14 (11) ◽  
pp. 1505-1521 ◽  
Author(s):  
Leslie M. Shaw ◽  
Jalayne Arias ◽  
Kaj Blennow ◽  
Douglas Galasko ◽  
Jose Luis Molinuevo ◽  
...  

Author(s):  
S.C Burnham ◽  
P.M. Coloma ◽  
Q.-X. Li ◽  
S. Collins ◽  
G. Savage ◽  
...  

BACKGROUND: The National Institute on Aging and Alzheimer’s Association (NIA-AA) have proposed a new Research Framework: Towards a biological definition of Alzheimer’s disease, which uses a three-biomarker construct: Aß-amyloid, tau and neurodegeneration AT(N), to generate a biomarker based definition of Alzheimer’s disease. OBJECTIVES: To stratify AIBL participants using the new NIA-AA Research Framework using cerebrospinal fluid (CSF) biomarkers. To evaluate the clinical and cognitive profiles of the different groups resultant from the AT(N) stratification. To compare the findings to those that result from stratification using two-biomarker construct criteria (AT and/or A(N)). DESIGN: Individuals were classified as being positive or negative for each of the A, T, and (N) categories and then assigned to the appropriate AT(N) combinatorial group: A-T-(N)-; A+T-(N)-; A+T+(N)-; A+T-(N)+; A+T+(N)+; A-T+(N)-; A-T-(N)+; A-T+(N)+. In line with the NIA-AA research framework, these eight AT(N) groups were then collapsed into four main groups of interest (normal AD biomarkers, AD pathologic change, AD and non-AD pathologic change) and the respective clinical and cognitive trajectories over 4.5 years for each group were assessed. In two sensitivity analyses the methods were replicated after assigning individuals to four groups based on being positive or negative for AT biomarkers as well as A(N) biomarkers. SETTING: Two study centers in Melbourne (Victoria) and Perth (Western Australia), Australia recruited MCI individuals and individuals with AD from primary care physicians or tertiary memory disorder clinics. Cognitively healthy, elderly NCs were recruited through advertisement or via spouses of participants in the study. PARTICIPANTS: One-hundred and forty NC, 33 MCI participants, and 27 participants with AD from the AIBL study who had undergone CSF evaluation using Elecsys® assays. INTERVENTION (if any): Not applicable. MEASUREMENTS: Three CSF biomarkers, namely amyloid β1-42, phosphorylated tau181, and total tau, were measured to provide the AT(N) classifications. Clinical and cognitive trajectories were evaluated using the AIBL Preclinical Alzheimer Cognitive Composite (AIBL-PACC), a verbal episodic memory composite, an executive function composite, California Verbal Learning Test – Second Edition; Long-Delay Free Recall, Mini-Mental State Examination, and Clinical Dementia Rating Sum of Boxes scores. RESULTS: Thirty-eight percent of the elderly NCs had no evidence of abnormal AD biomarkers, whereas 33% had biomarker levels consistent with AD or AD pathologic change, and 29% had evidence of non-AD biomarker change. Among NC participants, those with biomarker evidence of AD pathology tended to perform worse on cognitive outcome assessments than other biomarker groups. Approximately three in four participants with MCI or AD had biomarker levels consistent with the research framework’s definition of AD or AD pathologic change. For MCI participants, a decrease in AIBL-PACC scores was observed with increasing abnormal biomarkers; and increased abnormal biomarkers were also associated with increased rates of decline across some cognitive measures. CONCLUSIONS: Increasing biomarker abnormality appears to be associated with worse cognitive trajectories. The implementation of biomarker classifications could help better characterize prognosis in clinical practice and identify those at-risk individuals more likely to clinically progress, for their inclusion in future therapeutic trials.


SLEEP ◽  
2020 ◽  
Vol 43 (Supplement_1) ◽  
pp. A23-A23
Author(s):  
R Mehra ◽  
R Bhambra ◽  
J Bena ◽  
L Bekris ◽  
J Leverenz ◽  
...  

Abstract Introduction Although recent data implicates sleep and circadian disruption to neurodegeneration in Alzheimer’s Disease (AD), the association of objective circadian biomarkers and neurodegeneration remains understudied. We hypothesize that actigraphy-based circadian measures are associated with cerebrospinal fluid (CSF) biomarkers of neurodegeneration in those mild cognitive impairment due to AD (MCI-AD). Methods Eighteen patients with CSF biomarker-confirmed MCI-AD underwent actigraphy monitoring generating the following circadian measures: amplitude, F-ratio and mesor and morning collection of CSF biomarkers of neurodegeneration (Aβ42,t-tau,p-tau). Linear models were used to evaluate the association of circadian and CSF measures; logarithmic transformations were performed on neurodegenerative markers for greater normality. Analysis was performed using SAS software. A significance level of 0.05 was assumed for all tests. Results Eighteen MCI-AD patients who were 68± 6.2 years, 44% female, with median AHI=12 and underwent actigraphy monitoring for 8.2+/-3.2 days were included. There was no significant association of circadian measures and Aβ42 nor with mesor and neurodegeneration biomarkers. Amplitude was associated with both p-tau and t-tau, such that each 10 unit increase in amplitude resulted in a predicted increase in p-tau of 8% (95% CI:1%-15%, p=0.018) and an increase of 13% (3%-23%; p=0.01) in t-tau. F-ratio was positively associated with p-tau and t-tau; each 1000 unit increase in F-ratio resulted in a predicted 12% (4%-22%; p=0.007) increase in P-tau and 20%(6%-35%; p=0.005) increase in t-tau. Associations of these circadian measures and CSF levels of p-tau and t-tau remained statistically significant after adjustment for age and sex. Conclusion Among patients with symptomatic MCI stages of AD, objective measures of circadian rhythm disruption are associated with CSF-based biomarkers of neurodegeneration even after consideration of age and sex. Future investigation should clarify directionality of this association and potential utility of circadian-based interventions in the mitigation of AD progression. Support N/A


2020 ◽  
Vol 6 (43) ◽  
pp. eaaz9360 ◽  
Author(s):  
Lenora Higginbotham ◽  
Lingyan Ping ◽  
Eric B. Dammer ◽  
Duc M. Duong ◽  
Maotian Zhou ◽  
...  

Alzheimer’s disease (AD) lacks protein biomarkers reflective of its diverse underlying pathophysiology, hindering diagnostic and therapeutic advancements. Here, we used integrative proteomics to identify cerebrospinal fluid (CSF) biomarkers representing a wide spectrum of AD pathophysiology. Multiplex mass spectrometry identified ~3500 and ~12,000 proteins in AD CSF and brain, respectively. Network analysis of the brain proteome resolved 44 biologically diverse modules, 15 of which overlapped with the CSF proteome. CSF AD markers in these overlapping modules were collapsed into five protein panels representing distinct pathophysiological processes. Synaptic and metabolic panels were decreased in AD brain but increased in CSF, while glial-enriched myelination and immunity panels were increased in brain and CSF. The consistency and disease specificity of panel changes were confirmed in >500 additional CSF samples. These panels also identified biological subpopulations within asymptomatic AD. Overall, these results are a promising step toward a network-based biomarker tool for AD clinical applications.


Sign in / Sign up

Export Citation Format

Share Document