scholarly journals 4-Methylumbelliferone suppresses catabolic activation in anterior cruciate ligament-derived cells via a mechanism independent of hyaluronan inhibition

2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Masaru Idota ◽  
Shinya Ishizuka ◽  
Hideki Hiraiwa ◽  
Satoshi Yamashita ◽  
Hiroki Oba ◽  
...  

Abstract Background The anterior cruciate ligament (ACL) has a key role as a dynamic stabilizer of the knee joints, and ACL dysfunction caused by traumatic or degenerative rupture accelerates osteoarthritis progression. Thus, it is important to prevent the degenerative rupture of the ACL. 4-Methylumbelliferone (4-MU), a pre-approved drug, exerts anti-inflammatory effects in osteoarthritis chondrocytes. It was originally used as an inhibitor of hyaluronan synthesis in chondrocytes. Methods In this study, we investigated whether 4-MU affects the expression of catabolic factors, such as matrix metalloproteinase (MMP)-1, MMP-3, and interleukin (IL)-6, in ACL-derived cells and ACL explant cultures using immunohistochemistry, real-time RT-qPCR, and capillary western immunoassay. Furthermore, the hyaluronan concentration was evaluated using a colorimetric assay. Statistical analyses were conducted using analysis of variance for multi-group comparisons, followed by Tukey or Tukey-Kramer post hoc test. Results Our results revealed, for the first time, that 4-MU suppressed the IL-β-induced upregulation of pro-catabolic factors, such as MMP-1, MMP-3, and IL-6, in ACL-derived cells. This suppressive effect was also observed in the cultured ligament tissues in ex vivo experiments. 4-MU also reversed an enhanced dependence on glycolysis in IL-1β-activated ACL-derived cells. Furthermore, we found that the suppressive effects of 4-MU were exerted directly and not through the inhibition of hyaluronan synthesis. Conclusions We conclude that 4-MU could be an effective and useful treatment for knee osteoarthritis, owing to its anti-inflammatory effect on, not only chondrocytes but also on ligament cells.

2004 ◽  
Vol 12 (8) ◽  
pp. 614-626 ◽  
Author(s):  
Danika L. Batiste ◽  
Alexandra Kirkley ◽  
Sheila Laverty ◽  
Lisa M.F. Thain ◽  
Alison R. Spouge ◽  
...  

2012 ◽  
Vol 6 (1) ◽  
pp. 295-300 ◽  
Author(s):  
James Min-Leong Wong ◽  
Tanvir Khan ◽  
Chethan S Jayadev ◽  
Wasim Khan ◽  
David Johnstone

Anterior Cruciate Ligament (ACL) rupture is a common sporting injury that frequently affects young, athletic patients. Apart from the functional problems of instability, patients with ACL deficient knees also develop osteoarthritis. Although this is frequently cited as an indication for ACL reconstruction, the relationship between ACL rupture, reconstruction and the instigation and progression of articular cartilage degenerative change is controversial. The purpose of this paper is to review the published literature with regards ACL rupture and the multifactorial causes for osteoarthritis progression, and whether or not this is slowed or stopped by ACL reconstruction. There is no evidence in the published literature to support the view that ACL reconstruction prevents osteoarthritis, although it may prevent further meniscal damage. It must be recognised that this conclusion is based on the current literature which has substantial methodological limitations.


2011 ◽  
Vol 36 (6) ◽  
pp. 1315-1320 ◽  
Author(s):  
Turgay Efe ◽  
Alexander Füglein ◽  
Alan Getgood ◽  
Thomas J. Heyse ◽  
Susanne Fuchs-Winkelmann ◽  
...  

2020 ◽  
Author(s):  
Sung Hyun Lee ◽  
Hyung Gyu Cho ◽  
Jin Soo Song ◽  
Keun Churl Chun ◽  
Churl Hong Chun

Abstract Background: Immunofluorescence analyses of anterior cruciate ligament (ACL) allografts following remnant-preserving ACL reconstruction using Achilles tendon allografts have provided evidence for the presence of neural elements. In this study, we aimed to examine the expression of neural elements and quantify the presence of neural cells in ACL remnants and Achilles allografts using nerve growth factor (NGF) therapy after remnant-preserving ACL reconstruction.Methods: Experiments were conducted on 5 pairs of rats (approximately 8 weeks old and weighing 320 g at the time of surgery). Longitudinally split Achilles tendons from the paired rats were freshly frozen and later defrosted with warm saline and allografted onto the right ACL of the other rat that was partially detached at the femoral attachment site. A sham operation was conducted on the left knee to be used as a control. NGF was injected into both knee joints every week for 6 weeks after surgery. The presence of neural cells in the ACL of the sham-operated knee, allografted Achilles tendon, and ACL remnant was examined 6 weeks post-surgery using H and E and immunofluorescent staining.Results: H and E staining did not reveal neural cells in any of the three groups. However, immunofluorescence analysis showed the presence of nestin-positive neural elements in the normal ACL tissues as well as ACL remnants. Additionally, neural elements were examined in 7 of the 8 (87.5%) allograft tissues. Quantitative analysis showed no difference in the number or area of nuclei among the three groups. However, the number and area of neural cells in the Achilles allografts were significantly lower than those in the other two groups (p=0.000 and p=0.001, respectively).Conclusion: Our observations indicate that ACL remnants promote the new ingrowth and persistence of neural cells. We suggest that the ingrowth of neural elements can support the persistence and new ingrowth of mechanoreceptors, thereby enhancing the functional stability of knee joints. Moreover, the expression of neural cells in the Achilles allografts was lower than that in normal ACL tissues and ACL remnants in the quantitative evaluation, thereby confirming the essential role of ACL remnants in knee joint functionalization.


Sign in / Sign up

Export Citation Format

Share Document