scholarly journals Ball heading and subclinical concussion in soccer as a risk factor for anterior cruciate ligament injury

2021 ◽  
Vol 16 (1) ◽  
Author(s):  
George Kakavas ◽  
Nikolaos Malliaropoulos ◽  
Wieslaw Blach ◽  
Georgios Bikos ◽  
Filippo Migliorini ◽  
...  

AbstractSoccer players have a high risk of anterior cruciate ligament (ACL) injury, a potentially career-ending event. ACL rupture has been linked with abnormal neuromuscular control in the lower limb. Additionally, heading the ball with the unprotected head during game play is increasingly recognized as a major source of exposure to concussive and sub-concussive repetitive head impacts. This article provides a hypothesis of potential connection of ACL injury with ball heading in soccer players. The study reviews literature sources regarding the impact of neurocognitive alterations after ball headings in ACL injuries. Poor baseline neurocognitive performance or impairments in neurocognitive performance via sleep deprivation, psychological stress, or concussion can increase the risk for subsequent musculoskeletal injury.

2019 ◽  
Vol 12 (3) ◽  
pp. 279-288 ◽  
Author(s):  
Alberto Grassi ◽  
Luca Macchiarola ◽  
Matteo Filippini ◽  
Gian Andrea Lucidi ◽  
Francesco Della Villa ◽  
...  

Background: The burden of anterior cruciate ligament (ACL) injury in professional soccer players is particularly relevant as it represents a potentially career-threatening injury. Hypothesis: Our hypotheses were that (1) injury incidence rate would be similar to that reported in the literature, (2) we would identify a uniform distribution of the injuries along the season, and (3) injury incidence rate would be similar in high-ranked and lower ranked teams, based on final placement in the league. Study Design: Descriptive epidemiological study. Level of Evidence: Level 4. Methods: Professional male soccer players participating in the Serie A championship league in 7 consecutive seasons (2011-2012 to 2017-2018) were screened to identify ACL injuries through the online football archive transfermarkt.com . Exposure in matches and training were calculated. Results: There were 84 ACL injuries found (mean player age, 25.3 ± 4.2 years). Overall, 25% of ACL injuries were reruptures (15%) or contralateral injuries (10%). ACL incidence rate was 0.4215 per 1000 hours of play during Serie A matches, 0.0305 per 1000 hours of training (rate ratio [RR], 13.8; 95% CI, 8.4-22.7; P < 0.0001), and 0.0618 per 1000 hours of total play. Injury distribution had a bimodal peak, with the highest number of events in October and March. Alternatively, training injuries peaked in June and July. A significantly higher incidence rate was found for the teams ranked from 1st to 4th place compared with those ranked 5th to 20th (0.1256 vs 0.0559 per 1000 hours of play; RR, 2.2; 95% CI, 1.4-3.6; P = 0.0003). A similar finding was found for injury incidence proportion (3.76% vs 1.64%; P = 0.0003). Conclusion: The overall incidence rate of ACL injuries in Italian Serie A was 0.062 per 1000 hours, with a 14-fold risk in matches compared with training. Relevantly, 25% were second injuries. Most injuries occurred in October and March, and an almost 2-fold incidence rate and incidence proportion were noted in those teams ranked in the first 4 positions of the championship league. Clinical Relevance: Knowing the precise epidemiology of ACL injury in one of the most competitive professional football championship leagues could help delineate fields of research aimed to investigate its risk factors.


2020 ◽  
Vol 8 (3_suppl2) ◽  
pp. 2325967120S0012
Author(s):  
Mark Howard ◽  
Hyunwoo Paco Kang ◽  
Samantha Solaru ◽  
Alexander E. Weber ◽  
Mark F. Rick C

Objectives: Previous orthopaedic literature has examined the effect of synthetic playing surfaces on the risk of anterior cruciate ligament (ACL) injury in athletes and produced varying and inconclusive results. The objective of this study was to examine the role of playing surface on the incidence and risk of ACL injury in collegiate soccer athletes. Methods: The NCAA Injury Surveillance Program (ISP) database was queried for ACL injuries for male and female soccer players from the 2004-05 through the 2013-14 seasons at all levels of competition. The number of athlete exposures (AEs), defined as 1 athlete participating in 1 practice or competition in which they were exposed to the possibility of athletic injury, were recorded for grass and synthetic playing surfaces. Both the reported injuries and exposures provided were weighted in order to represent the entire NCAA collegiate soccer population. Normalized ACL incidence rates were calculated as well as 95% confidence intervals (95%CI). Rate ratios comparing competition type amongst both competition and practice were calculated. Results: ACL injuries were more common on grass surfaces (1.16 per 10,000 AEs, 95%CI 1.12-1.20) than artificial turf (0.92 per 10,000 AEs, 95%CI 0.84-1.04). This difference was statistically significant (IRR 1.26, p<0.0001), and driven primarily by the difference in injury incidence during practice. The injury incidence during practice on natural grass (1.18 per 10,000 AEs, 95% CI 1.11-1.26) was significantly greater than the injury incidence rate during practice on artificial turf (0.067 per 10,000 AEs, 95%CI 0.043-0.096). Players were 17.7 times more likely (95%CI 10.6678-27.2187, p<0.0001) to sustain an ACL injury during practice on natural grass when compared to practice on artificial turf. However, there was no significant difference in injury incidence during matches (IRR 0.96, p=0.44), with matches on natural grass (3.35 per 10,000 AEs, 95% CI 3.21-3.51) equivalent to matches on artificial surfaces (3.49 per 10,000 AEs, 95%CI 3.18-3.81). When comparing exposure type, the injury rate was significantly greater during matches (3.38 per 10,000 AEs, 95% CI 3.25-3.52) compared to practices (0.82 per 10,000 AEs, 95%CI 0.77-0.88), with a 4.10-fold increase in ACL injury incidence during matches compared to practice (p<0.0001). Conclusion: Between 2004 and 2014, NCAA soccer players experienced a greater number of ACL injuries on natural grass playing surfaces compared with artificial turf playing surfaces. This difference is driven by injuries during practice, where athletes were nearly 18 times more likely to suffer an ACL injury on grass versus artificial turf. While ACL injuries were more likely during matches compared to practices, no difference in incidence was noted between playing surfaces. Additional study is warranted investigating potential causes for this observed increased risk with soccer practice on grass fields.


2020 ◽  
Vol 8 (5) ◽  
pp. 232596712091917
Author(s):  
Andrew S. Gupta ◽  
Lauren A. Pierpoint ◽  
R. Dawn Comstock ◽  
Michael G. Saper

Background: Anterior cruciate ligament (ACL) tears are common among high school athletes, with sex-based differences accounting for higher injury rates in girls. Previous epidemiological studies on ACL injuries focusing on adolescent athletes have looked at injuries across multiple sports, but few have analyzed ACL tears in solely high school soccer athletes. Purpose: To examine sex-based differences in the epidemiology of ACL injuries among high school soccer players in the United States (US). Study Design: Descriptive epidemiological study. Methods: ACL injury data for US high school soccer players were obtained from the internet-based National High School Sports-Related Injury Surveillance Study’s High School RIO (Reporting Information Online) system. Athletic trainers from a random sample of 100 high schools from 8 strata based on US Census geographic region reported data for athlete-exposures (AEs) (practice or competition) and ACL injuries from 2007 through 2017. Injury rates were calculated as the number of ACL injuries per 100,000 AEs. Subgroup differences were evaluated with rate ratios (RRs) or injury proportion ratios (IPRs) and 95% CIs. Statistical differences in demographics between groups were examined using independent t tests. Comparisons of categorical data (ie, level of play) were performed using the Wald chi-square test. Results: The reported number of ACL injuries corresponded to weighted national estimates of 41,025 (95% CI, 33,321-48,730) ACL injuries in boys’ soccer and 110,028 (95% CI, 95,349-124,709) in girls’ soccer during the study period. The rate of injuries was higher in girls’ soccer (13.23/100,000 AEs) than boys’ soccer (4.35/100,000 AEs) (RR, 3.04 [95% CI, 2.35-3.98]). The rate of ACL injuries was higher in competition compared with practice for girls (RR, 14.77 [95% CI, 9.85-22.15]) and boys (RR, 8.69 [95% CI, 5.01-15.08]). Overall, a smaller proportion of ACL injuries were caused by player-player contact for girls (30.1%) compared with boys (48.6%) (IPR, 0.62 [95% CI, 0.41-0.93]). Conclusion: ACL injury rates and patterns in high school soccer players differed between sex, type of exposure (practice vs competition), and mechanism of injury.


2019 ◽  
Vol 7 (3_suppl) ◽  
pp. 2325967119S0015
Author(s):  
Andrew Gupta ◽  
Lauren Pierpoint ◽  
Dawn Comstock ◽  
Michael Saper

BACKGROUND Anterior cruciate ligament (ACL) injuries are common among adolescent athletes, with soccer being the sport most frequently implicated in girls’ ACL injuries. The current literature on ACL injuries, while extensive, lacks a comprehensive study of ACL injuries in United States (US) high school soccer players. The objective of this study was to describe the epidemiology of ACL injuries among US high school soccer players. METHODS ACL injury and athlete exposure (AE) data for US high school soccer players were obtained from the internet-based National High School Sports-Related Injury Surveillance System, High School RIO (Reporting Information Online) dataset collected from school years 2007-2008 through 2016-2017. Injury rates were calculated as the number of ACL injuries per 100,000 AEs. Subgroup differences were evaluated with rate ratios (RRs) or injury proportion ratios (IPRs) and 95% Confidence Intervals (CIs). Subgroup differences were examined with independent t-tests. Comparisons of categorical data (i.e., mechanism of injury) were performed using Pearson’s?2 tests. RESULTS The number of ACL injuries reported to High School RIO corresponded to weighted national estimates of 41,205 (95% CI = 33,321 – 48,730) ACL injuries in boys’ soccer and 110,029 (95% CI = 95,349 – 124,709) in girls’ soccer during the study period. ACL injury rates were significantly higher in girls’ soccer (13.23 per 100,000 AEs) than boys’ soccer (4.35 per 100,000 AEs) (RR = 3.04, 95% CI = 2.35 – 3.98) and were significantly higher in competition compared to practice for both girls (RR = 14.77, 95% CI = 9.85 – 22.15) and boys (RR = 8.69, 95% CI = 5.01 – 15.08). A greater proportion of ACL injuries were due to player-player contact in boys (48.6%) compared to girls (30.1%) (IPR = 1.62, 95% CI = 1.08 – 2.42). There was no statistical difference in the proportion of ACL injuries managed surgically in boys and girls (84% vs. 78%, respectively). CONCLUSIONS There are sex-based differences in mechanism of injury and ACL injury rate in high school soccer players. In addition, boys and girls showed higher rates of injury during competition. This study suggests several areas for targeted evidence-based ACL injury prevention strategies in US high school soccer players.


2015 ◽  
Vol 50 (10) ◽  
pp. 1005-1010 ◽  
Author(s):  
Dustin R. Grooms ◽  
Stephen J. Page ◽  
James A. Onate

Background Anterior cruciate ligament (ACL) injury has multifactorial causes encompassing mechanical, hormonal, exposure, and anatomical factors. Alterations in the central nervous system also play a role, but their influence after injury, recovery, and recurrent injury remain unknown. Modern neuroimaging techniques can be used to elucidate the underlying functional and structural alterations of the brain that predicate the neuromuscular control adaptations associated with ACL injury. This knowledge will further our understanding of the neural adaptations after ACL injury and rehabilitation and in relation to injury risk. In this paper, we describe the measurement of brain activation during knee extension-flexion after ACL injury and reconstruction and 26 days before a contralateral ACL injury. Methods Brain functional magnetic resonance imaging data for an ACL-injured participant and a matched control participant were collected and contrasted. Results Relative to the matched control participant, the ACL-injured participant exhibited increased activation of motor-planning, sensory-processing, and visual-motor control areas. A similar activation pattern was present for the contralateral knee that sustained a subsequent injury. Conclusions Bilateral neuroplasticity after ACL injury may contribute to the risk of second injury, or aspects of neurophysiology may be predisposing factors to primary injury. Clinical Implications Sensory-visual-motor function and motor-learning adaptations may provide targets for rehabilitation.


2020 ◽  
Vol 3 (3) ◽  
pp. 1
Author(s):  
Rongqiang Zheng ◽  
Jingyi Zhou ◽  
Teng Zhang

Non-contact anterior cruciate ligament (ACL) injury can occur in many sports. It is interrelated with gender, anatomy, biomechanics, and neuromuscular control. Taekwondo athletes have a higher incidence of ACL injury than athletes from other sports. Objective: This study aimed to determine the biomechanical gender differences and mechanism of taekwondo athletes with ACL injury. Methods: A total of 28 taekwondo athletes (aged 14–19 years) were randomly selected and grouped by gender. Feet high floor, one foot high floor, and single leg squat were analyzed by a Vicon motion analysis system and Kistler 3D force platform for action. The knee joint angle and ground force were evaluated. Results: Results demonstrated biomechanical differences in knee joint between male and female athletes. Conclusion: ACL injury in taekwondo female athletes indicated the biomechanical mechanism of the knee joint, and it can be prevented by neuromuscular control training.


Author(s):  
Theresa Diermeier ◽  
Benjamin B Rothrauff ◽  
Lars Engebretsen ◽  
Andrew D Lynch ◽  
Eleonor Svantesson ◽  
...  

Treatment strategies for anterior cruciate ligament (ACL) injuries continue to evolve. Evidence supporting best practice guidelines for the management of ACL injury is to a large extent based on studies with low-level evidence. An international consensus group of experts was convened to collaboratively advance towards consensus opinions regarding the best available evidence on operative versus non-operative treatment for ACL injury.The purpose of this study was to report the consensus statements on operative versus non-operative treatment of ACL injuries developed at the ACL Consensus Meeting Panther Symposium 2019. Sixty-six international experts on the management of ACL injuries, representing 18 countries, convened and participated in a process based on the Delphi method of achieving consensus. Proposed consensus statements were drafted by the Scientific Organising Committee and Session Chairs for the three working groups. Panel participants reviewed preliminary statements prior to the meeting and provided initial agreement and comments on the statement via online survey. During the meeting, discussion and debate occurred for each statement, after which a final vote was then held. Eighty per cent agreement was defined a priori as consensus. A total of 11 of 13 statements on operative veresus non-operative treatment of ACL injury reached consensus during the symposium. Nine statements achieved unanimous support; two reached strong consensus; one did not achieve consensus; and one was removed due to redundancy in the information provided.In highly active patients engaged in jumping, cutting and pivoting sports, early anatomical anterior cruciate ligament reconstruction (ACLR) is recommended due to the high risk of secondary meniscus and cartilage injuries with delayed surgery, although a period of progressive rehabilitation to resolve impairments and improve neuromuscular function is recommended. For patients who seek to return to straight plane activities, non-operative treatment with structured, progressive rehabilitation is an acceptable treatment option. However, with persistent functional instability or when episodes of giving way occur, anatomical ACLR is indicated. The consensus statements derived from international leaders in the field will assist clinicians in deciding between operative and non-operative treatment with patients after an ACL injury.Level of evidence: V


2019 ◽  
Vol 141 (12) ◽  
Author(s):  
Stephanie G. Cone ◽  
Jorge A. Piedrahita ◽  
Jeffrey T. Spang ◽  
Matthew B. Fisher

Abstract Partial and complete anterior cruciate ligament (ACL) injuries occur in both pediatric and adult populations and can result in loss of joint stability and function. The sigmoidal shape of knee joint function (load-translation curve) under applied loads includes a low-load region (described by slack length) followed by a high-load region (described by stiffness). However, the impact of age and injury on these parameters is not fully understood. The current objective was to measure the effects of age and injury on the shape of joint function in a porcine model. In response to an applied anterior–posterior tibial load, in situ slack did not change (p > 0.05), despite sevenfold increases in joint size with increasing age. Joint stiffness increased from an average of 10 N/mm in early youth to 47 N/mm in late adolescence (p < 0.05). In situ ACL stiffness increased similarly, and changes in in situ joint stiffness and ACL stiffness were highly correlated across ages. With complete ACL injury, in situ slack length increased by twofold to fourfold and in situ stiffness decreased threefold to fourfold across ages (p < 0.05). Partial ACL injury resulted in less dramatic, but statistically significant, increases in joint slack and significant decreases in in situ joint stiffness in the adolescent age groups (p < 0.05). This work furthers our understanding of the interaction between joint biomechanics and ACL function throughout growth and the impact of ACL injury in the skeletally immature joint.


2020 ◽  
Vol 12 (5) ◽  
pp. 462-469 ◽  
Author(s):  
Alberto Grassi ◽  
Filippo Tosarelli ◽  
Piero Agostinone ◽  
Luca Macchiarola ◽  
Stefano Zaffagnini ◽  
...  

Background: The mechanisms of noncontact anterior cruciate ligament (ACL) injuries are an enormously debated topic in sports medicine; however, the late phases of injury have not yet been investigated. Hypothesis: A well-defined posterior tibial translation can be visualized with its timing and patterns of knee flexion after ACL injury. Study Design: Case series. Level of Evidence: Level 4. Methods: A total of 137 videos of ACL injuries in professional male football (soccer) players were screened for a sudden posterior tibial reduction (PTR) in the late phase of noncontact ACL injury mechanism. The suitable videos were analyzed using Kinovea software for sport video analysis. The time of initial contact of the foot with the ground, the foot lift, the start of tibial reduction, and the end of tibial reduction were assessed. Results: A total of 21 videos exhibited a clear posterior tibial reduction of 42 ± 11 ms, after an average of 229 ± 81 ms after initial contact. The tibial reduction occurred consistently within the first 50 to 60 ms after foot lift (55 ± 30 ms) and with the knee flexed between 45° and 90° (62%) or more than 90° (24%). Conclusion: A rapid posterior tibial reduction is consistently present in the late phases of noncontact ACL injuries in some male soccer players, with a consistent temporal relationship between foot lift from the ground and consistent degrees of knee flexion near or above 90°. Clinical Relevance: This study provides insight into the late phases of ACL injury. The described mechanism, although purely theoretical, could be responsible for commonly observed intra-articular lesions.


Author(s):  
Angela Blasimann ◽  
Irene Koenig ◽  
Isabel Baert ◽  
Heiner Baur ◽  
Dirk Vissers

Abstract Background Adequate neuromuscular control of the knee could be one element to prevent secondary injuries after an anterior cruciate ligament (ACL) injury. To assess neuromuscular control in terms of time, amplitude and activity, electromyography (EMG) is used. However, it is unclear which assessments using EMG could be used for a safe return to sports (RTS). Therefore, we aimed to summarize EMG-related assessments for neuromuscular control of the knee in adult patients after an ACL injury to decide upon readiness for RTS. Methods This systematic review followed guidelines of Preferred Reporting of Items for Systematic Reviews and Meta-Analyses (PRISMA) and Cochrane recommendations. MEDLINE/PubMed, EMBASE, CINAHL, Cochrane Library, Physiotherapy Evidence Database (PEDro), SPORTDiscus and the Web of Science were searched from inception to March 2019 and updated in November 2020. Studies identifying electromyographic assessments for neuromuscular control during dynamic tasks in adult, physically active patients with an anterior cruciate ligament injury were eligible and qualitatively synthesized. Two independent reviewers used a modified Downs and Black checklist to assess risk of bias of included studies. Results From initially 1388 hits, 38 mainly cross-sectional, case-controlled studies were included for qualitative analysis. Most studies provided EMG outcomes of thigh muscles during jumping, running or squatting. Outcomes measures described neuromuscular control of the knee in domains of time, amplitude or activity. Risk of bias was medium to high due to an unclear description of participants and prior interventions, confounding factors and incompletely reported results. Conclusions Despite a wide range of EMG outcome measures for neuromuscular control, none was used to decide upon return to sports in these patients. Additional studies are needed to define readiness towards RTS by assessing neuromuscular control in adult ACL patients with EMG. Further research should aim at finding reliable and valid, EMG-related variables to be used as diagnostic tool for neuromuscular control. Moreover, future studies should aim at more homogenous groups including adequately matched healthy subjects, evaluate gender separately and use sport-specific tasks. Registration The protocol for this systematic review was indexed beforehand in the International Prospective Register of Systematic Reviews (PROSPERO) and registered as CRD42019122188.


Sign in / Sign up

Export Citation Format

Share Document