scholarly journals About classical molecular genetics, cytogenetic and molecular cytogenetic data not considered by Genome Reference Consortium and thus not included in genome browsers like UCSC, Ensembl or NCBI

2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Thomas Liehr

Abstract Background The Genome Reference Consortium (GRC) has according to its own statement the “mission to improve the human reference genome assembly, correcting errors and adding sequence to ensure it provides the best representation of the human genome to meet basic and clinical research needs”. Data from GRC is included in genome browsers like UCSC (University of California, Santa Cruz), Ensembl or NCBI (National Center for Biotechnology Information) and are thereby bases for scientific and diagnostically working human genetic community. Method Here long standing knowledge deriving from classical molecular genetic, cytogenetic and molecular cytogenetic data, not being considered yet by GRC was revisited. Results There were three major points identified: (1) GRC missed to including three chromosomal subbands, each, for 1q32.1, 2p21, 5q13.2, 6p22.3 and 6q21, which were defined by International System for Human Cytogenetic Nomenclature (ISCN) already back in 1980s; instead GRC included additional 6 subbands not ever recognized by ISCN. (2) GRC defined 34 chromosomal subbands of 0.1 to 0.9 Mb in size, while it is general agreement of cytogeneticists that it unlikely to detect chromosomal aberrations below 1–2 Mb in size by GTG-banding. And (3): still all sequences used in molecular cytogenetic routine diagnostics to detect heterochromatic and/ or pericentromeric satellite DNA sequences within the human genome are not included yet into human reference genome. For those sequences, localization and approximate sizes have been determined in the 1970s to 1990, and if included at least ~ 100 Mb of the human genome sequence could be added to the genome browsers. Conclusion Overall, taking into account the here mentioned points and correcting and including the data will definitely provide to the still not being completely finished mapping of the human genome.

BMC Genomics ◽  
2019 ◽  
Vol 20 (1) ◽  
Author(s):  
Ran Li ◽  
Xiaomeng Tian ◽  
Peng Yang ◽  
Yingzhi Fan ◽  
Ming Li ◽  
...  

Abstract Background The non-reference sequences (NRS) represent structure variations in human genome with potential functional significance. However, besides the known insertions, it is currently unknown whether other types of structure variations with NRS exist. Results Here, we compared 31 human de novo assemblies with the current reference genome to identify the NRS and their location. We resolved the precise location of 6113 NRS adding up to 12.8 Mb. Besides 1571 insertions, we detected 3041 alternate alleles, which were defined as having less than 90% (or none) identity with the reference alleles. These alternate alleles overlapped with 1143 protein-coding genes including a putative novel MHC haplotype. Further, we demonstrated that the alternate alleles and their flanking regions had high content of tandem repeats, indicating that their origin was associated with tandem repeats. Conclusions Our study detected a large number of NRS including many alternate alleles which are previously uncharacterized. We suggested that the origin of alternate alleles was associated with tandem repeats. Our results enriched the spectrum of genetic variations in human genome.


Author(s):  
Alaina Shumate ◽  
Aleksey V. Zimin ◽  
Rachel M. Sherman ◽  
Daniela Puiu ◽  
Justin M. Wagner ◽  
...  

AbstractHere we describe the assembly and annotation of the genome of an Ashkenazi individual and the creation of a new, population-specific human reference genome. This genome is more contiguous and more complete than GRCh38, the latest version of the human reference genome, and is annotated with highly similar gene content. The Ashkenazi reference genome, Ash1, contains 2,973,118,650 nucleotides as compared to 2,937,639,212 in GRCh38. Annotation identified 20,157 protein-coding genes, of which 19,563 are >99% identical to their counterparts on GRCh38. Most of the remaining genes have small differences. 40 of the protein-coding genes in GRCh38 are missing from Ash1; however, all of these genes are members of multi-gene families for which Ash1 contains other copies. 11 genes appear on different chromosomes from their homologs in GRCh38. Alignment of DNA sequences from an unrelated Ashkenazi individual to Ash1 identified ~1 million fewer homozygous SNPs than alignment of those same sequences to the more-distant GRCh38 genome, illustrating one of the benefits of population-specific reference genomes.


2019 ◽  
Author(s):  
Ran Li ◽  
Xiaomeng Tian ◽  
Peng Yang ◽  
Yingzhi Fan ◽  
Ming Li ◽  
...  

Abstract Background The non-reference sequences (NRS) represent structure variations in human genome with potential functional significance. However, besides the known insertions, it is currently unknown whether other types of structure variations with NRS exist. Results Here, we compared 31 human de novo assemblies with the current reference genome to identify the NRS and their location. We resolved the precise location of 6,113 NRS adding up to 12.8 Mb. Besides 1,571 insertions, we detected 3,041 alternate alleles, which were defined as having less than 90% (or none) identity with the reference alleles. These alternate alleles overlapped with 1,143 protein-coding genes including a putative novel MHC haplotype. Further, we demonstrated that the alternate alleles and their flanking regions had high content of tandem repeats, indicating that their origin was associated with tandem repeats. Conclusions Our study detected a large number of NRS including many alternate alleles which are previously uncharacterized. We suggested that the origin of alternate alleles was associated with tandem repeats. Our results enriched the spectrum of genetic variations in human genome.


2020 ◽  
Vol 21 (1) ◽  
pp. 55-79 ◽  
Author(s):  
Daniel R. Zerbino ◽  
Adam Frankish ◽  
Paul Flicek

Our understanding of the human genome has continuously expanded since its draft publication in 2001. Over the years, novel assays have allowed us to progressively overlay layers of knowledge above the raw sequence of A's, T's, G's, and C's. The reference human genome sequence is now a complex knowledge base maintained under the shared stewardship of multiple specialist communities. Its complexity stems from the fact that it is simultaneously a template for transcription, a record of evolution, a vehicle for genetics, and a functional molecule. In short, the human genome serves as a frame of reference at the intersection of a diversity of scientific fields. In recent years, the progressive fall in sequencing costs has given increasing importance to the quality of the human reference genome, as hundreds of thousands of individuals are being sequenced yearly, often for clinical applications. Also, novel sequencing-based assays shed light on novel functions of the genome, especially with respect to gene expression regulation. Keeping the human genome annotation up to date and accurate is therefore an ongoing partnership between reference annotation projects and the greater community worldwide.


2021 ◽  
Author(s):  
Aleksey V Zimin ◽  
Alaina Shumate ◽  
Ida Shinder ◽  
Jakob Heinz ◽  
Daniela Puiu ◽  
...  

Until 2019, the human genome was available in only one fully-annotated version, which was the result of 18 years of continuous improvement and revision. Despite dramatic improvements in sequencing technology, no other individual human genome was available as an annotated reference until 2019, when the genome of an Ashkenazi individual was released. In this study, we describe the assembly and annotation of a second individual genome, from a Puerto Rican individual whose DNA was collected as part of the Human Pangenome project. The new genome, called PR1, is the first true reference genome created from an individual of African descent. Due to recent improvements in both sequencing and assembly technology, PR1 is more complete and more contiguous than either the human reference genome (GRCh38) or the Ashkenazi genome. Annotation revealed 42,217 genes (of which 20,168 are protein-coding), including 107 additional gene copies that are present in PR1 and missing from GRCh38. 180 genes have fewer copies in PR1 than in GRCh38, 13 map only partially, and 3 genes (1 protein-coding) from GRCh38 are entirely missing from PR1.


2019 ◽  
Author(s):  
Ran Li ◽  
Xiaomeng Tian ◽  
Peng Yang ◽  
Yingzhi Fan ◽  
Ming Li ◽  
...  

Abstract Background The non-reference sequences (NRS) represent structure variations in human genome with potential functional significance. However, besides the known insertions, it is currently unknown whether other types of structure variations with NRS exist. Results Here, we compared 31 human de novo assemblies with the current reference genome to identify the NRS and their location. We resolved the precise location of 6,113 NRS adding up to 12.8 Mb. Besides 1,571 insertions, we detected 3,041 alternate alleles, which were defined as having less than 90% (or none) identity with the reference alleles. These alternate alleles overlapped with 1,143 protein-coding genes including a putative novel MHC haplotype. Further, we demonstrated that the alternate alleles and their flanking regions had high content of tandem repeats, indicating that their origin was associated with tandem repeats. Conclusions Our study detected a large number of NRS including many alternate alleles which are previously uncharacterized. We suggested that the origin of alternate alleles was associated with tandem repeats. Our results enriched the spectrum of genetic variations in human genome.


Nature ◽  
2020 ◽  
Vol 585 (7823) ◽  
pp. 79-84 ◽  
Author(s):  
Karen H. Miga ◽  
Sergey Koren ◽  
Arang Rhie ◽  
Mitchell R. Vollger ◽  
Ariel Gershman ◽  
...  

AbstractAfter two decades of improvements, the current human reference genome (GRCh38) is the most accurate and complete vertebrate genome ever produced. However, no single chromosome has been finished end to end, and hundreds of unresolved gaps persist1,2. Here we present a human genome assembly that surpasses the continuity of GRCh382, along with a gapless, telomere-to-telomere assembly of a human chromosome. This was enabled by high-coverage, ultra-long-read nanopore sequencing of the complete hydatidiform mole CHM13 genome, combined with complementary technologies for quality improvement and validation. Focusing our efforts on the human X chromosome3, we reconstructed the centromeric satellite DNA array (approximately 3.1 Mb) and closed the 29 remaining gaps in the current reference, including new sequences from the human pseudoautosomal regions and from cancer-testis ampliconic gene families (CT-X and GAGE). These sequences will be integrated into future human reference genome releases. In addition, the complete chromosome X, combined with the ultra-long nanopore data, allowed us to map methylation patterns across complex tandem repeats and satellite arrays. Our results demonstrate that finishing the entire human genome is now within reach, and the data presented here will facilitate ongoing efforts to complete the other human chromosomes.


2019 ◽  
Vol 63 (6) ◽  
pp. 757-771 ◽  
Author(s):  
Claire Francastel ◽  
Frédérique Magdinier

Abstract Despite the tremendous progress made in recent years in assembling the human genome, tandemly repeated DNA elements remain poorly characterized. These sequences account for the vast majority of methylated sites in the human genome and their methylated state is necessary for this repetitive DNA to function properly and to maintain genome integrity. Furthermore, recent advances highlight the emerging role of these sequences in regulating the functions of the human genome and its variability during evolution, among individuals, or in disease susceptibility. In addition, a number of inherited rare diseases are directly linked to the alteration of some of these repetitive DNA sequences, either through changes in the organization or size of the tandem repeat arrays or through mutations in genes encoding chromatin modifiers involved in the epigenetic regulation of these elements. Although largely overlooked so far in the functional annotation of the human genome, satellite elements play key roles in its architectural and topological organization. This includes functions as boundary elements delimitating functional domains or assembly of repressive nuclear compartments, with local or distal impact on gene expression. Thus, the consideration of satellite repeats organization and their associated epigenetic landmarks, including DNA methylation (DNAme), will become unavoidable in the near future to fully decipher human phenotypes and associated diseases.


Author(s):  
Adrien Oliva ◽  
Raymond Tobler ◽  
Alan Cooper ◽  
Bastien Llamas ◽  
Yassine Souilmi

Abstract The current standard practice for assembling individual genomes involves mapping millions of short DNA sequences (also known as DNA ‘reads’) against a pre-constructed reference genome. Mapping vast amounts of short reads in a timely manner is a computationally challenging task that inevitably produces artefacts, including biases against alleles not found in the reference genome. This reference bias and other mapping artefacts are expected to be exacerbated in ancient DNA (aDNA) studies, which rely on the analysis of low quantities of damaged and very short DNA fragments (~30–80 bp). Nevertheless, the current gold-standard mapping strategies for aDNA studies have effectively remained unchanged for nearly a decade, during which time new software has emerged. In this study, we used simulated aDNA reads from three different human populations to benchmark the performance of 30 distinct mapping strategies implemented across four different read mapping software—BWA-aln, BWA-mem, NovoAlign and Bowtie2—and quantified the impact of reference bias in downstream population genetic analyses. We show that specific NovoAlign, BWA-aln and BWA-mem parameterizations achieve high mapping precision with low levels of reference bias, particularly after filtering out reads with low mapping qualities. However, unbiased NovoAlign results required the use of an IUPAC reference genome. While relevant only to aDNA projects where reference population data are available, the benefit of using an IUPAC reference demonstrates the value of incorporating population genetic information into the aDNA mapping process, echoing recent results based on graph genome representations.


2011 ◽  
Vol 50 (6) ◽  
pp. 442-455 ◽  
Author(s):  
Laurence Bianchini ◽  
Esma Saâda ◽  
Elisabet Gjernes ◽  
Marion Marty ◽  
Juliette Haudebourg ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document